Project description:Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.
Project description:Temperature and salinity are some of the most influential abiotic parameters shaping biota in aquatic ecosystems. In recent decades, climate change has had a crucial impact on both factors—especially around the Antarctic Peninsula—with increasing air and water temperature leading to glacial melting and the accompanying freshwater increase in coastal areas. Antarctic soft and hard bottoms are typically inhabited by microphytobenthic communities, which are often dominated by benthic diatoms. Their physiology and primary production are assumed to be negatively affected by increased temperatures and lower salinity. In this study, six representative benthic diatom strains were isolated from different aquatic habitats at King George Island, Antarctic Peninsula, and comprehensively identified based on molecular markers and morphological traits. Photosynthesis, respiration, and growth response patterns were investigated as functions of varying light availability, temperature, and salinity. Photosynthesis−irradiance curve measurements pointed to low light requirements, as light-saturated photosynthesis was reached at <70 µmol photons m−2 s−1. The marine isolates exhibited the highest effective quantum yield between 25 and 45 SA (absolute salinity), but also tolerance to lower and higher salinities at 1 SA and 55 SA, respectively, and in a few cases even <100 SA. In contrast, the limnic isolates showed the highest effective quantum yield at salinities ranging from 1 SA to 20 SA. Almost all isolates exhibited high effective quantum yields between 1.5 °C and 25 °C, pointing to a broad temperature tolerance, which was supported by measurements of the short-term temperature-dependent photosynthesis. All studied Antarctic benthic diatoms showed activity patterns over a broader environmental range than they usually experience in situ. Therefore, it is likely that their high ecophysiological plasticity represents an important trait to cope with climate change in the Antarctic Peninsula.
Project description:Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.
Project description:Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.
Project description:In polar regions, the microphytobenthos has important ecological functions in shallow-water habitats, such as on top of coastal sediments. This community is dominated by benthic diatoms, which contribute significantly to primary production and biogeochemical cycling while also being an important component of polar food webs. Polar diatoms are able to cope with markedly changing light conditions and prolonged periods of darkness during the polar night in Antarctica. However, the underlying mechanisms are poorly understood. In this study, five strains of Antarctic benthic diatoms were isolated in the field, and the resulting unialgal cultures were identified as four distinct species, of which one is described as a new species, Planothidium wetzelii sp. nov. All four species were thoroughly examined using physiological, cell biological, and biochemical methods over a fully controlled dark period of 3 months. The results showed that the utilization of storage lipids is one of the key mechanisms in Antarctic benthic diatoms to survive the polar night, although different fatty acids were involved in the investigated taxa. In all tested species, the storage lipid content declined significantly, along with an ultrastructurally observable degradation of the chloroplasts. Surprisingly, photosynthetic performance did not change significantly despite chloroplasts decreasing in thylakoid membranes and an increased number of plastoglobules. Thus, a combination of biochemical and cell biological mechanisms allows Antarctic benthic diatoms to survive the polar night.
Project description:In intertidal marine sediments, characterized by rapidly fluctuating and often extreme light conditions, primary production is frequently dominated by diatoms. We performed a comparative analysis of photophysiological traits in 15 marine benthic diatom species belonging to the four major morphological growth forms (epipelon (EPL), motile epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton (TYCHO)) found in these sediments. Our analyses revealed a clear relationship between growth form and photoprotective capacity, and identified fast regulatory physiological photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were grown in benthic or planktonic conditions, reflecting an adaptation to a low light environment. Our results thus provide the first experimental evidence for the existence of a trade-off between behavioural (motility) and physiological photoprotective mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or a tychoplanktonic life style, display the physiological photoprotective response typical of these growth forms. This observation underscores the importance of growth form and not phylogenetic relatedness as the prime determinant shaping the physiological photoprotective capacity of benthic diatoms.
Project description:Eight benthic diatom taxa (Actinocyclus octonarius, Melosira moniliformis, Halamphora sp. 1, Halamphora sp. 2, Navicula perminuta, Navicula phyllepta, Nitzschia dubiiformis, Nitzschia pusilla) were isolated from sediments sampled in the southern coastal brackish Baltic Sea and established as unialgal cultures. The coastal shallow water sampling area lies close to a fen peat site (Hütelmoor) and both are connected through an underground peat layer, which might facilitate organic matter and nutrient fluxes along the terrestrial-marine gradient. The photosynthetic performance of these diatoms was measured at different photon fluence rates (0-1200 μmol photons m-2 s-1, always recorded at 20°C) and different temperatures (5-40°C, always measured at saturating ∼270 μmol photons m-2 s-1), resulting in light saturation points between 32 and 151 μmol photons m-2 s-1 and maximum net primary production rates of 23-144 μmol O2 mg-1 Chl a h-1. None of the species showed severe photoinhibition, and hence all displayed a high photo-physiological plasticity. Photosynthetic oxygen evolution and respirational oxygen consumption between 5 and 40°C revealed eurythermal traits for half of the studied taxa as photosynthetic efficiency was at least 20% of the maximum values at the extreme temperatures. The remaining taxa also indicated eurythermal characteristics, however, photosynthetic efficiency of at least 20% was at a narrower temperature range [5 (10) °C to 30 (35) °C]. Species-specific optimum temperatures for photosynthesis (15-30°C) were always lower compared to respiration (25-40°C). Actinocyclus octonarius and Nitzschia dubiiformis were grown in different defined media, some enriched with Hütelmoor water to test for possible effects of organic components. Hütelmoor water media stimulated growth of both diatom species when kept in a light dark cycle. Actinocyclus octonarius particularly grew in darkness in Hütelmoor water media, pointing to heterotrophic capabilities. The benthic diatoms studied are characterized by high photo-physiological plasticity and a broad temperature tolerance to maintain high primary production rates under wide environmental fluctuations. Organic carbon fluxes from the Hütelmoor into the Baltic Sea may support mixo- and/or heterotrophic growth of microphytobenthic communities. These are essential traits for living in a highly dynamic and variable shallow water environment at the coastal zone of the Baltic Sea.
Project description:BACKGROUND:Diatoms are of great significance to primary productivity in oceans, yet little is known about their biogeographic distribution in oligotrophic rivers. RESULTS:With the help of metabarcoding analysis of 279 samples from the Yangtze River, we provided the first integral biogeographic pattern of planktonic and benthic diatoms over a 6030 km continuum along the world's third largest river. Our study revealed spatial dissimilarity of diatoms under varying landforms, including plateau, mountain, foothill, basin, foothill-mountain, and plain regions, from the river source to the estuary. Environmental drivers of diatom communities were interpreted in terms of photosynthetically active radiation, temperature, channel slope and nutrients, and human interference. Typical benthic diatoms, such as Pinnularia, Paralia, and Aulacoseira, experienced considerable reduction in relative abundance downstream of the Three Gorges Dam and the Xiluodu Dam, two of the world's largest dams. CONCLUSIONS:Our study revealed that benthic diatoms are of particular significance in characterizing motile guild in riverine environments, which provides insights into diatom biogeography and biogeochemical cycles in large river ecosystems.
Project description:Intra Peritoneal Chemo Hyperthermia (IPCH) is a recently validated option for the treatment of peritoneal carcinomatosis from colorectal or ovarian origin. This therapeutic program demonstrated a significant improvement of the late stages (i.e. carcinomatosis) of the disease. From a clinical point of view, within the first 24 hours after IPCH, patients undergo a systemic inflammatory response syndrome, and therefore require to be monitored in an intensive care unit. From a metabolic perspective, preliminary data have been shown a significant "anaerobic style" disturbance of energetic metabolism, suggesting a deep cellular energetic deficit throughout IPCH process.
Putative contradictory effects of IPCH, like the increase of chemotherapy-related cellular toxicity due to heat and on the other hand the initiation of a stress protein response (heat shock response) which helps to reduce the cell injuries, leads to conduct a research project on the underlying mechanisms: consequences, in terms of patient’s care and follow-up, are of high relevance.
The primary goal is a multimodal assessment of the IPCH-related cell modifications: signaling pathways, apoptosis and antitumoral immune response.
The assessment criteria include Heat shock protein expression (blood/cell ratio) compared to baseline values, apoptosis and immune response before/after IPCH.
The scheduled sample size is 30 patients having an IPCH and 30 patients contraindicated per surgery.