Project description:Terrestrial eggs have evolved repeatedly in tropical anurans exposing embryos to the new threat of dehydration. Red-eyed treefrogs, Agalychnis callidryas, lay eggs on plants over water. Maternally provided water allows shaded eggs in humid sites to develop to hatching without rainfall, but unshaded eggs and those in less humid sites can die from dehydration. Hatching responses of amphibian eggs to dry conditions are known from two lineages with independent origins of terrestrial eggs. Here, we experimentally tested for dehydration-induced early hatching in another lineage (Agalychnis callidryas, Phyllomedusidae), representing a third independent origin of terrestrial eggs. We also investigated how dehydration affected egg and clutch structure, and egg mortality. We collected clutches from a pond in Gamboa, Panama, and randomly allocated them to wet or dry treatments at age 1 day. Embryos hatched earlier from dry clutches than from wet clutches, accelerating hatching by ∼11%. Clutch thickness and egg diameter were affected by dehydration, diverging between treatments over time. Meanwhile, mortality in dry clutches was six-fold higher than in control clutches. With this study, early hatching responses to escape mortality from egg dehydration are now known from three anuran lineages with independent origins of terrestrial eggs, suggesting they may be widespread. Further studies are needed to understand how terrestrial amphibian eggs can respond to, or will be affected by, rapid changes in climate over the next decades.
Project description:In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed. Here, we attempt to resolve this puzzle by partitioning distinctiveness according to how it is achieved: (i) greater variation within each trait, contributing to elevated 'absolute distinctiveness' or (ii) combining phenotypic traits in unpredictable combinations ('combinatorial distinctiveness'). We tested how consistency covaries with each type of distinctiveness by measuring variation in egg colour and pattern in two African bird families (Cisticolidae and Ploceidae) that experience mimetic brood parasitism. Contrary to predictions, parasitized species, but not unparasitized species, exhibited a negative relationship between consistency and combinatorial distinctiveness. Moreover, regardless of parasitism status, consistency was negatively correlated with absolute distinctiveness across species. Together, these results suggest that (i) selection from parasites acts on how traits combine rather than absolute variation in traits, (ii) consistency and distinctiveness are alternative rather than complementary elements of signatures and (iii) mechanistic constraints may explain the negative relationship between consistency and absolute distinctiveness across species.
Project description:As part of a Germany-wide project that evaluates strategies for the reduction of multi-resistant bacteria along the poultry production chain, the impact of different hatching egg disinfectants on hatchability and health of the broiler chicks was evaluated. Animal trials were conducted with extended-spectrum beta-lactamase- (ESBL) producing Escherichia (E.) coli contaminated hatching eggs and six disinfection protocols that used formaldehyde, hydrogen peroxide, low-energy electron irradiation, peracetic acid and an essential oil preparation. Each protocol was tested on a group of 50 chicks. Equally sized positive and negative control groups were carried along for each trial. Hatchability, mortality and body weight were recorded as performance parameters. During necropsy of half of the animals in each group on day 7 and 14 respectively, macroscopic abnormalities, body weight, weights of liver and gut convolute were recorded and a range of tissue samples for histological examination were collected as part of the health assessment. A decrease in hatchability was recorded for spray application of essential oils. Body weight development was overall comparable, in several groups even superior, to the Ross308 performance objectives, but a reduced performance was seen in the hydrogen peroxide group. Histologically, lymphoid follicles were regularly seen in all sampled organs and no consistent differences were observed between contaminated and non-contaminated groups. Significances were infrequently and inconsistently seen. In conclusion, remarkable findings were a decrease in hatchability caused by the essential oils spray application and a reduced body weight development in the hydrogen peroxide group. Therefore, the essential oils preparation as spray application was deemed inappropriate in practice, while the application of hydrogen peroxide was considered in need of further research. The other trial results indicate that the tested hatching egg disinfectants present a possible alternative to formaldehyde.
Project description:Climate change is increasing both environmental temperatures and droughts. Many ectotherms respond behaviorally to heat, thereby avoiding damage from extreme temperatures. Within species, thermal tolerance varies with factors such as hydration as well as ontogenetic stage. Many tropical anurans lay terrestrial eggs, relying on environmental moisture for embryonic development. These eggs are vulnerable to dehydration, and embryos of some species can hatch prematurely to escape from drying eggs. Warmer temperatures can accelerate development and thus hatching, but excess heat can kill embryos. Thus, we hypothesize that embryos may show a behavioral thermal tolerance limit, hatching prematurely to avoid potentially lethal warming. If so, because warming and drying are often associated, we hypothesize this limit, measurable as a voluntary thermal maximum, may depend on hydration. We manipulated the hydration of the terrestrial eggs of Agalychnis callidryas, in intact clutches and egg-groups isolated from clutch jelly, then warmed them to assess if embryos hatch early as a behavioral response to high temperatures and whether their thermal tolerance varies with hydration or surrounding structure. We discovered that heating induces hatching; these embryos show a behavioral escape-hatching response that enables them to avoid potentially lethal warming. Hydrated eggs and clutches lost more water and warmed more slowly than dehydrated ones, indicating that hydration buffers embryos from environmental warming via evaporative cooling. Embryos in hydrated clutches tolerated greater warming before hatching and suffered higher mortality, suggesting their behavioral Thermal Safety Margin is small. In contrast, lower thermal tolerance protected dry embryos, and those isolated from clutch jelly, from lethal warming. Heat-induced hatching offers a convenient behavioral assay for the thermal tolerance of terrestrial anuran embryos and the interactive effects of warming and dehydration at an early life stage. This work expands the set of threats against which embryos use hatching in self-defense, creating new opportunities for comparative studies of thermal tolerance as well as integrative studies of self-defense mechanisms at the egg stage.
Project description:Pomacea canaliculata feeds on seedlings that have been planted less than three weeks ago. This study aimed to construct an imaging system that can eliminate the egg masses of P. canaliculata before they hatch and multiply. An image classification method is proposed that can recognize the state of hatching of the egg masses. As hatching process proceeds, this state changes from "freshly laid" to "maturing" and then to "mature." In the proposed method, first, egg image pixels are detected using a four-label semantic segmentation model that includes the background label. Next, the egg masses are classified by analyzing the distribution of the labeled pixels in the egg masses. We conducted an experiment in which we verified the effectiveness of the proposed method on images of egg masses from an agricultural canal and evaluated its classification accuracy. The F1-score of the proposed method was 1.00 when the weather was cloudy and 0.842 when it was sunny, demonstrating that the state of hatching could be identified accurately regardless of the brightness of the day. Using this classification method, only newly laid eggs can be dropped into water and eliminated, which is a step forward in the automation of this method for P. canaliculata control.
Project description:The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
Project description:The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris . Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Although unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs, egg hatching was most efficient in the presence of bacteria that bound poles with high density such as Staphylococcus aureus . Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
Project description:Trichuriasis is a neglected tropical disease widely distributed among tropical and sub-tropical areas and associated with poverty and lack of access to safe drinking water, sanitation and hygiene. Existing drugs have limited efficacy and face a constant risk of developing resistance, necessitating the search for alternative treatments. However, drug discovery efforts are sparse and little research has been performed on anthelminthic effects on embryonated eggs, the infectious life stage of Trichuris spp. We examined bacterial species dependent egg hatching of the murine model parasite Trichuris muris and identified Escherichia coli, Pseudomonas aeruginosa and Enterobacter hormaechei effective as hatching inducers, resulting in hatching yields of 50-70%. Streptococcus salivarius, reported to be associated with reduced drug efficacy of ivermectin-albendazole coadministration in Trichuris trichiura infected patients, did not promote egg hatching in vitro. We optimized hatching conditions using E. coli grown in luria broth or brain-heart infusion media to reach consistently high hatching yields to provide a sensitive, robust and simple egg-hatching assay. Oxantel pamoate demonstrated the strongest potency in preventing hatching, with an EC50 value of 2-4 μM after 24 h, while pyrantel pamoate, levamisole and tribendimidine exhibited only moderate to weak inhibitory effects. Conversely, all tested benzimidazoles and macrolide anthelminthics as well as emodepside failed to prevent hatching (EC50 > 100 μM). Our study demonstrates that egg-hatching assays complement larval and adult stage drug sensitivity assays, to expand knowledge about effects of current anthelminthics on Trichuris spp. Further, the developed T. muris egg-hatching assay provides a simple and cheap screening tool that could potentially lead to the discovery of novel anthelminthic compounds.
Project description:Alternative hatching systems compared to conventional hatchery-hatched systems showed positive effects on welfare of broiler chickens. In order to investigate an additional positive effect of elevated platforms, two hatching methods (on-farm [OH] vs. hatchery-hatched [HH]) and two environments from the first day onwards (with elevated platforms [enriched] vs. without elevated platforms [control]) were combined and investigated using a 2 × 2 factorial design. In three consecutive trials, the combination of the four treatments were repeated eight times each. One thousand six hundred fast-growing broiler chickens (Ross strain) were reared in a mixed-sex system. Chick quality was assessed at hatch and performance parameters and behavior parameters were measured during the entire rearing period of 35 d. For the statistical analysis, LME's and GLMM's were used depending on the data. In general, hatching system and housing environment showed no interaction. There were no differences in hatchability between treatment groups (p=0.93). However, OH chickens showed a higher body weight throughout the rearing period (all p<0.001). OH chickens had a lower body temperature than HH chickens (p=0.002) during the rearing period. OH chickens compared to HH chickens tended to show a higher usage of elevated platform at night (p=0.07). The enriched groups showed higher activity (p<0.0001), but no improved walking ability (p=0.82) than the control groups. The differences in performance and behavior were low between hatching systems and may be related to the short period of feed and water deprivation and the lack of long commercial processing and transportation procedures in the HH treatment group in our experiment. Overall, both on-farm hatching and elevated platforms can lead to an improvement of performance and activity parameters and, thus, an improvement of certain aspects of animal welfare but both factors do not seem to interact with each other.
Project description:Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276-induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony.