Project description:In the last decade, more than half of U.S. children were born to working mothers and 65% of working men and women were of reproductive age. In 2004 more than 28 million women age 18-44 were employed full time. This implies the need for clinicians to possess an awareness about the impact of work on the health of their patients and their future offspring. Most chemicals in the workplace have not been evaluated for reproductive toxicity, and where exposure limits do exist, they were generally not designed to mitigate reproductive risk. Therefore, many toxicants with unambiguous reproductive and developmental effects are still in regular commercial or therapeutic use and thus present exposure potential to workers. Examples of these include heavy metals, (lead, cadmium), organic solvents (glycol ethers, percholoroethylene), pesticides and herbicides (ethylene dibromide) and sterilants, anesthetic gases and anti-cancer drugs used in healthcare. Surprisingly, many of these reproductive toxicants are well represented in traditional employment sectors of women, such as healthcare and cosmetology. Environmental exposures also figure prominently in evaluating a woman's health risk and that to a pregnancy. Food and water quality and pesticide and solvent usage are increasingly topics raised by women and men contemplating pregnancy. The microenvironment of a woman, such as her choices of hobbies and leisure time activities also come into play. Caregivers must be aware of their patients' potential environmental and workplace exposures and weigh any risk of exposure in the context of the time-dependent window of reproductive susceptibility. This will allow informed decision-making about the need for changes in behavior, diet, hobbies or the need for added protections on the job or alternative duty assignment. Examples of such environmental and occupational history elements will be presented together with counseling strategies for the clinician.
Project description:Our previous works have demonstrated the ability of our localized orbital correction (LOC) methodology to greatly improve the accuracy of various thermochemical properties at the stationary points of the Density Functional Theory (DFT) reaction coordinate (RC). Herein we extend this methodology from stationary points to the entire RC connecting any stationary points by developing continuous localized orbital corrections (CLOCs). We show that the resultant method, DFT-CLOC, is capable of producing RCs with far greater accuracy than uncorrected DFT and yet requires negligible computational cost beyond the uncorrected DFT calculations. Various post-Hartree-Fock (post-HF) reaction coordinate profiles were used, including a sigmatropic shift, Diels-Alder reaction, electrocyclization, carbon radical and three hydrogen radical reactions to show that this method is robust across multiple reaction types of general interest.
Project description:This paper describes the development of the B3LYP localized orbital correction model which improves the accuracy of the B3LYP thermochemical predictions for compounds containing transition metals. The development of this model employs a large data set containing 36 experimental atomic energies and 71 bond dissociation energies. B3LYP calculations were carried out on these systems with different basis sets. Based on an electronic structure analysis and physical arguments, we built a set of 10 parameters to correct atomic data and a set of 21 parameters to correct bond dissociation energies. Using the results from our biggest basis set, the model was shown to reduce the mean absolute deviation from 7.7 to 0.4 kcalmol for the atomic data and from 5.3 to 1.7 kcalmol for the bond dissociation energies. The model was also tested using a second basis set and was shown to give relatively accurate results too. The model was also able to predict an outlier in the experimental data that was further investigated with high level coupled-cluster calculations.
Project description:Autophagy is conserved throughout the eukaryotes and for many years, work in Saccharomyces cerevisiae has been at the forefront of autophagy research. However as our knowledge of the autophagic machinery has increased, differences between S. cerevisiae and mammalian cells have become apparent. Recent work in other organisms, such as the amoeba Dictyostelium discoideum, indicate an autophagic pathway much more similar to mammalian cells than S. cerevisiae, despite its earlier evolutionary divergence. S. cerevisiae therefore appear to have significantly specialized, and the autophagic pathway in mammals is much more ancient than previously appreciated, which has implications for how we interpret data from organisms throughout the eukaryotic tree.
Project description:DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.
Project description:This work describes the extension of a previously reported empirical localized orbital correction model for density functional theory (DFT-LOC) for atomization energies, ionization potentials, electron affinities, and reaction enthalpies to the correction of barrier heights for chemical reactions of various types including cycloadditions, cycloreversions, dipolar cycloadditions, S(N)2's, carbon radical reactions, hydrogen radical reactions, sigmatropic shifts, and electrocyclizations. The B3LYP localized orbital correction version of the model (B3LYP-LOC) reduces the number of outliers and overall mean unsigned error (MUE) vs. experiment or ab initio values from 3.2 to 1.3 kcal/mole for barrier heights and from 5.1 to 1.1 kcal/mole for reaction enthalpies versus B3LYP. Furthermore, the new model has essentially zero additional computational cost beyond standard DFT calculations. Although the model is heuristic and is based on multiple linear regression to experimental or ab initio data, each of the parameters is justified on chemical grounds and provides insight into the fundamental limitations of DFT, most importantly the failure of current DFT methods to accurately account for nondynamical electron correlation.
Project description:The extent of electronic wave function delocalization for the charge carrier (electron or hole) in double helical DNA plays an important role in determining the DNA charge transfer mechanism and kinetics. The size of the charge carrier's wave function delocalization is regulated by the solvation induced localization and the quantum delocalization among the π stacked base pairs at any instant of time. Using a newly developed localized orbital scaling correction (LOSC) density functional theory method, we accurately characterized the quantum delocalization of the hole wave function in double helical B-DNA. This approach can be used to diagnose the extent of delocalization in fluctuating DNA structures. Our studies indicate that the hole state tends to delocalize among 4 guanine-cytosine (GC) base pairs and among 3 adenine-thymine (AT) base pairs when these adjacent bases fluctuate into degeneracy. The relatively small delocalization in AT base pairs is caused by the weaker π-π interaction. This extent of delocalization has significant implications for assessing the role of coherent, incoherent, or flickering coherent carrier transport in DNA.
Project description:Polo-like kinases (Plks) are evolutionarily conserved serine/threonine protein kinases playing crucial roles during multiple stages of mitosis and cytokinesis in yeast and animals. Plks are characterized by a unique Polo-box domain, which plays regulatory roles in controlling Plk activation, interacting with substrates and targeting Plk to specific subcellular locations. Plk activity and protein abundance are subject to temporal and spatial control through transcription, phosphorylation and proteolysis. In the early branching protists, Plk orthologues are present in some taxa, such as kinetoplastids and Giardia, but are lost in apicomplexans, such as Plasmodium. Works from characterizing a Plk orthologue in Trypanosoma brucei, a kinetoplastid protozoan, discover its essential roles in regulating the inheritance of flagellum-associated cytoskeleton and the initiation of cytokinesis, but not any stage of mitosis. These studies reveal evolutionarily conserved and species-specific features in the control of Plk activation, substrate recognition and protein abundance, and suggest the divergence of Plk function and regulation for specialized needs in this flagellated unicellular eukaryote.
Project description:Microarray gene expression of peripheral blood of the prostate cancer patients receiving localized external beam radiation therapy (EBRT) Assay processed at EBRT time points, baseline, midpoint (days 19-21) and endpoint (days 38-42)
Project description:Three interferons are marketed for the treatment of relapsing-remitting multiple sclerosis. In its pivotal trial, one of them demonstrated impressive efficacy as a once-weekly regimen, but later head-to-head studies and reviews questioned its superiority. Analysis of this pivotal trial in publications and health authority reviews has shown that its early termination might have caused attrition bias. Censored patients were different from those completing the study on magnetic resonance imaging parameters and benefited from placebo in terms of relapse rate. Early progression of disability and differences in follow-up duration could have favored the benefit observed for the progression of disability outcome. Only the raw data could be of help to confirm or refute doubts about this trial. Raw data should be made available to the scientific community.