Project description:Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.
Project description:Although a standard genome-wide significance level has been accepted for the testing of association between common genetic variants and disease, the era of whole-genome sequencing (WGS) requires a new threshold. The allele frequency spectrum of sequence-identified variants is very different from common variants, and the identified rare genetic variation is usually jointly analyzed in a series of genomic windows or regions. In nearby or overlapping windows, these test statistics will be correlated, and the degree of correlation is likely to depend on the choice of window size, overlap, and the test statistic. Furthermore, multiple analyses may be performed using different windows or test statistics. Here we propose an empirical approach for estimating genome-wide significance thresholds for data arising from WGS studies, and we demonstrate that the empirical threshold can be efficiently estimated by extrapolating from calculations performed on a small genomic region. Because analysis of WGS may need to be repeated with different choices of test statistics or windows, this prediction approach makes it computationally feasible to estimate genome-wide significance thresholds for different analysis choices. Based on UK10K whole-genome sequence data, we derive genome-wide significance thresholds ranging between 2.5 × 10(-8) and 8 × 10(-8) for our analytic choices in window-based testing, and thresholds of 0.6 × 10(-8) -1.5 × 10(-8) for a combined analytic strategy of testing common variants using single-SNP tests together with rare variants analyzed with our sliding-window test strategy.
Project description:As DNA sequencing costs decline, genetic testing options have expanded. Whole exome sequencing and whole genome sequencing (WGS) are entering clinical use, posing questions about their incremental value compared with disease-specific multigene panels that have been the cornerstone of genetic testing. Forty-one patients with hypertrophic cardiomyopathy who had undergone targeted hypertrophic cardiomyopathy genetic testing (either multigene panel or familial variant test) were recruited into the MedSeq Project, a clinical trial of WGS. Results from panel genetic testing and WGS were compared. In 20 of 41 participants, panel genetic testing identified variants classified as pathogenic, likely pathogenic, or uncertain significance. WGS identified 19 of these 20 variants, but the variant detection algorithm missed a pathogenic 18 bp duplication in myosin binding protein C (MYBPC3) because of low coverage. In 3 individuals, WGS identified variants in genes implicated in cardiomyopathy but not included in prior panel testing: a pathogenic protein tyrosine phosphatase, non-receptor type 11 (PTPN11) variant and variants of uncertain significance in integrin-linked kinase (ILK) and filamin-C (FLNC). WGS also identified 84 secondary findings (mean=2 per person, range=0-6), which mostly defined carrier status for recessive conditions. WGS detected nearly all variants identified on panel testing, provided 1 new diagnostic finding, and allowed interrogation of posited disease genes. Several variants of uncertain clinical use and numerous secondary genetic findings were also identified. Whereas panel testing and WGS provided similar diagnostic yield, WGS offers the advantage of reanalysis over time to incorporate advances in knowledge, but requires expertise in genomic interpretation to appropriately incorporate WGS into clinical care. URL: https://clinicaltrials.gov. Unique identifier: NCT01736566.
Project description:Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.
Project description:Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder responsible for sudden cardiac death from malignant ventricular arrhythmia. The term "channelopathy" is nowadays used to classify BrS as a purely electrical disease, mainly occurring secondarily to loss-of-function mutations in the α subunit of the cardiac sodium channel protein Nav1.5. In this setting, arrhythmic manifestations of the disease have been reported in the absence of any apparent structural heart disease or cardiomyopathy. Over the last few years, however, a consistent amount of evidence has grown in support of myocardial structural and functional abnormalities in patients with BrS. In detail, abnormal ventricular dimensions, either systolic or diastolic dysfunctions, regional wall motion abnormalities, myocardial fibrosis, and active inflammatory foci have been frequently described, pointing to alternative mechanisms of arrhythmogenesis which challenge the definition of channelopathy. The present review aims to depict the status of the art of concealed arrhythmogenic substrates in BrS, often resulting from an advanced and multimodal diagnostic workup, to foster future preclinical and clinical research in support of the cardiomyopathic nature of the disease.
Project description:BackgroundHypertrophic cardiomyopathy (HCM) is an extremely insidious and lethal disease caused by genetic variation. It has been studied for nearly 70 years since its discovery, but its cause of the disease remains a mystery. This study is aimed to explore the genetic pathogenesis of HCM in order to provide new insight for the diagnosis and treatment of HCM.MethodsPatients with HCM at 4 hospitals from January 1, 2020, to December 31, 2021, were collected. Peripheral blood of these patients was collected for whole exome sequencing. Moreover, data on the HCM transcriptome were analyzed in the GEO database.ResultsTotally, 14 patients were enrolled, and 6 single-nucleotide variation (SNV) mutant genes represented by MUC12 were observed. Most of the gene mutations in HCM patients were synonymous and non-synonymous, and the types of base mutations were mainly C > T and G > A. Copy number variants (CNVs) predominantly occurred on chromosome 1 in HCM patients. Furthermore, we found that the only ATP2A2 gene was differentially expressed in 3 groups of transcriptome data in GEO database, and the presence of ATP2A2 mutation in 10 samples was observed in this study.ConclusionIn summary, 7 mutated genes represented by MUC12 and ATP2A2 were found in this study, which may provide novel insights into the pathogenic mechanism of HCM.
Project description:BackgroundThe clinical utility of whole genome sequencing (WGS) in paediatric cancer has been demonstrated in recent years. WGS has been routinely available in the National Health Service (NHS) England for all children with cancer in England since 2021, but its uptake has been variable geographically. To explore the underlying barriers to routine use of WGS in this population across England and more widely in the United Kingdom (UK) and the Republic of Ireland (ROI), a one-day workshop was held in Cambridge, United Kingdom in October 2022.MethodsFollowing a series of talks, delegates participated in open, round-table discussions to outline local and broader challenges limiting routine WGS for diagnostic work-up for children with cancer in their Principal Treatment Centres (PTCs) and Genomic Laboratory Hubs (GLHs). Within smaller groups, delegates answered structured questions regarding clinical capability, education and training needs, and workforce competence and requirements. Data was recorded, centrally collated, and analysed following the event using thematic analysis.ResultsSixty participants attended the workshop with broad representation from the 20 PTCs across the UK and ROI and the seven GLHs in England. All healthcare professionals involved in the WGS pathway were represented, including paediatric oncologists, clinical geneticists, clinical scientists, and histopathologists. The main themes highlighted by the group in ensuring equitable access to WGS identified were: lack of knowledge equity between NHS trusts, with a perception of WGS being for research only; and perception of lack of financial support for the clinical process surrounding WGS, including lack of time to take informed consent from patients. The latter also included limited trained staff available for data interpretation, affecting the turnaround time for reporting. Finally, the need for an integrated digital pathway to order, track, and return data to clinicians was highlighted.ConclusionAt the workshop, the general motivation for including WGS in the diagnostic work up for children with cancer was high throughout the UK, however a perceived lack of resources and education opportunities limit the widespread use of this commissioned assay. This workshop has led to some recommendations to increase access to WGS in this population in England and more widely in the devolved national of the UK and the ROI.
Project description:Genomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology.The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology.Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories.As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future.Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure.
Project description:Dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder characterized by progressive heart failure. DCM typically remains clinically silent until adulthood, yet symptomatic disease can develop in childhood. We sought to identify the genetic basis of pediatric DCM in 15 sporadic and three affected-siblings cases, comprised of 21 affected children (mean age, five years) whose parents had normal echocardiograms (mean age, 39 years). Twelve underwent cardiac transplantation and five died with severe heart failure. Parent-offspring whole exome sequencing (WES) data were filtered for rare, deleterious, de novo and recessive variants. In prior work, we reported de novo mutations in TNNT2 and RRAGC and compound heterozygous mutations in ALMS1 and TAF1A among four cases in our cohort. Here, de novo mutations in established DCM genes-RBM20, LMNA, TNNT2, and PRDM16-were identified among five additional cases. The RBM20 mutation was previously reported in familial DCM. An identical unreported LMNA mutation was identified in two unrelated cases, both harboring gene-specific defects in cardiomyocyte nuclear morphology. Collectively, WES had a 50% diagnostic yield in our cohort, providing an explanation for pediatric heart failure and enabling informed family planning. Research is ongoing to discover novel DCM genes among the remaining families.
Project description:BackgroundAbout 80% of the roughly 7,000 known rare diseases are single gene disorders, about 85% of which are ultra-rare, affecting less than one in one million individuals. NGS technologies, in particular whole genome sequencing (WGS) in paediatric patients suffering from severe disorders of likely genetic origin improve the diagnostic yield allowing targeted, effective care and management. The aim of this study is to perform a systematic review and meta-analysis to assess the effectiveness of WGS, with respect to whole exome sequencing (WES) and/or usual care, for the diagnosis of suspected genetic disorders among the paediatric population.MethodsA systematic review of the literature was conducted querying relevant electronic databases, including MEDLINE, EMBASE, ISI Web of Science, and Scopus from January 2010 to June 2022. A random-effect meta-analysis was run to inspect the diagnostic yield of different techniques. A network meta-analysis was also performed to directly assess the comparison between WGS and WES.ResultsOf the 4,927 initially retrieved articles, thirty-nine met the inclusion criteria. Overall results highlighted a significantly higher pooled diagnostic yield for WGS, 38.6% (95% CI: [32.6 - 45.0]), in respect to WES, 37.8% (95% CI: [32.9 - 42.9]) and usual care, 7.8% (95% CI: [4.4 - 13.2]). The meta-regression output suggested a higher diagnostic yield of the WGS compared to WES after controlling for the type of disease (monogenic vs non-monogenic), with a tendency to better diagnostic performances for Mendelian diseases. The network meta-analysis showed a higher diagnostic yield for WGS compared to WES (OR = 1.54, 95%CI: [1.11 - 2.12]).ConclusionsAlthough whole genome sequencing for the paediatric population with suspected genetic disorders provided an accurate and early genetic diagnosis in a high proportion of cases, further research is needed for evaluating costs, effectiveness, and cost-effectiveness of WGS and achieving an informed decision-making process.Trial registrationThis systematic review has not been registered.