Project description:Lung cancer is responsible for more fatalities than any other cancer worldwide, with 1.76 million associated deaths reported in 2018. The key issue in the fight against this disease is the detection and diagnosis of all pulmonary nodules at an early stage. Artificial intelligence (AI) algorithms play a vital role in the automated detection, segmentation, and computer-aided diagnosis of malignant lesions. Among the existing algorithms, radiomics and deep-learning-based types appear to show the most promise. Radiomics is a growing field related to the extraction of a set of features from an image, which allows for automated classification of medical images into a predefined group. The process comprises a series of consecutive steps including image acquisition and pre-processing, segmentation of the desired region of interest, calculation of defined features, feature engineering, and construction of the classification model. The features calculated in this process are mainly shape features, as well as first- and higher-order texture features. To date, more than 100 features have been defined, although this number varies depending on the application. The greatest challenge in radiomics is building a cross-validated model based on a selected set of calculated features known as the radiomic signature. Numerous radiomic signatures have successfully been developed; however, reproducibility and clinical validity of the results obtained constitutes a considerable challenge of modern radiomics. Deep learning algorithms are another rapidly evolving technique and are recognized as a valuable tool in the field of medical image analysis for the detection, characterization, and assessment of lesions. Such an approach involves the design of artificial neural network architecture while upholding the goal of high classification accuracy. This paper illuminates the evolution and current state of artificial intelligence methods in lung imaging and the detection and diagnosis of pulmonary nodules, with a particular emphasis on radiomics and deep learning methods.
Project description:Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.
Project description:ObjectiveIn this review, we aim to present frontier studies in patients with lung cancer as it related to artificial intelligence (AI)-assisted decision-making and summarize the latest advances, challenges and future trend in this field.BackgroundDespite increasing survival rate in cancer patients over the last decades, lung cancer remains one of the leading causes of death worldwide. The early diagnosis, accurate evaluation and individualized treatment are vital approaches to improve the survival rate of patients with lung cancer. Thus, decision making based on these approaches requires accuracy and efficiency beyond manpower. Recent advances in AI and precision medicine have provided a fertile environment for the development of AI-based models. These models have the potential to assist radiologists and oncologists in detecting lung cancer, predicting prognosis and developing personalized treatment plans for better outcomes of the patients.MethodsWe searched literature from 2000 through July 31th, 2021 in Medline/PubMed, the Web of Science, the Cochrane Library, ACM Digital Library, INSPEC and EMBASE. Key words such as "artificial intelligence", "AI", "deep learning", "lung cancer", "NSCLC", "SCLC" were combined to identify related literatures. These literatures were then selected by two independent authors. Articles chosen by only one author will be examined by another author to determine whether this article was relative and valuable. The selected literatures were read by all authors and discussed to draw reliable conclusions.ConclusionsAI, especially for those based on deep learning and radiomics, is capable of assisting clinical decision making from many aspects, for its quantitatively interpretation of patients' information and its potential to deal with the dynamics, individual differences and heterogeneity of lung cancer. Hopefully, remaining problems such as insufficient data and poor interpretability may be solved to put AI-based models into clinical practice.
Project description:This paper explores the potential of artificial intelligence (AI) in lung cancer screening programs, particularly in the interpretation of computed tomography (CT) scans. The authors acknowledge the benefits of AI, including faster and potentially more accurate analysis of scans, but also raise concerns about clinician trust, transparency, and the deskilling of radiologists due to decreased scan exposure. The rise of AI in medicine and the introduction of national lung cancer screening programs are both increasing contemporarily and naturally the overlap and interplay between the two in the future is ensured. The paper highlights the importance of human-AI collaboration, emphasizing the need for interpretable models and ongoing validation through clinical trials. The promising results and problems uncovered the current pilot studies is explored. Building trust with patients and clinicians is also crucial, considering factors like disease risk perception and the human element of patient interaction. The authors conclude that while AI offers significant promise, widespread adoption hinges on addressing ethical considerations and ensuring a balanced, synergistic relationship between AI and medical professionals. This report aims to provide a talking point to inspire conversations around, and prepare clinicians for the rapidly approaching frontier that is AI in healthcare.
Project description:Lung cancer computed tomography (CT) screening trials using low-dose CT have repeatedly demonstrated a reduction in the number of lung cancer deaths in the screening group compared to a control group. With various countries currently considering the implementation of lung cancer screening, recurring discussion points are, among others, the potentially high false positive rates, cost-effectiveness, and the availability of radiologists for scan interpretation. Artificial intelligence (AI) has the potential to increase the efficiency of lung cancer screening. We discuss the performance levels of AI algorithms for various tasks related to the interpretation of lung screening CT scans, how they compare to human experts, and how AI and humans may complement each other. We discuss how AI may be used in the lung cancer CT screening workflow according to the current evidence and describe the additional research that will be required before AI can take a more prominent role in the analysis of lung screening CT scans.
Project description:BackgroundLung cancer causes more deaths worldwide than any other cancer. For early-stage patients, low-dose computed tomography (LDCT) of the chest is considered to be an effective screening measure for reducing the risk of mortality. The accuracy and efficiency of cancer screening would be enhanced by an intelligent and automated system that meets or surpasses the diagnostic capabilities of human experts.MethodsBased on the artificial intelligence (AI) technique, i.e., deep neural network (DNN), we designed a framework for lung cancer screening. First, a semi-automated annotation strategy was used to label the images for training. Then, the DNN-based models for the detection of lung nodules (LNs) and benign or malignancy classification were proposed to identify lung cancer from LDCT images. Finally, the constructed DNN-based LN detection and identification system was named as DeepLN and confirmed using a large-scale dataset.ResultsA dataset of multi-resolution LDCT images was constructed and annotated by a multidisciplinary group and used to train and evaluate the proposed models. The sensitivity of LN detection was 96.5% and 89.6% in a thin section subset [the free-response receiver operating characteristic (FROC) is 0.716] and a thick section subset (the FROC is 0.699), respectively. With an accuracy of 92.46%±0.20%, a specificity of 95.93%±0.47%, and a precision of 90.46%±0.93%, an ensemble result of benign or malignancy identification demonstrated a very good performance. Three retrospective clinical comparisons of the DeepLN system with human experts showed a high detection accuracy of 99.02%.ConclusionsIn this study, we presented an AI-based system with the potential to improve the performance and work efficiency of radiologists in lung cancer screening. The effectiveness of the proposed system was verified through retrospective clinical evaluation. Thus, the future application of this system is expected to help patients and society.
Project description:BackgroundRectal cancer is a common cancer worldwide and lacks effective prognostic markers. The development of prognostic markers by computational pathology methods has attracted increasing attention. This paper aims to construct a prognostic signature from whole slide images for predicting progression-free survival (PFS) of rectal cancer through an unsupervised artificial intelligence algorithm.MethodsA total of 238 patients with rectal cancer from two datasets were collected for the development and validation of the prognostic signature. A tumor detection model was built by transfer learning. Then, on the basis of the tumor patches recognized by the tumor detection model, a convolutional autoencoder model was built for decoding the tumor patches into deep latent features. Next, on the basis of the deep latent features, the tumor patches were divided into different clusters. The cluster number and other hyperparameters were optimized by a nested cross-validation method. The percentage of each cluster from the patient's tumor patches, which is hereafter called PCF, was calculated for prognostic signature construction. The prognostic signature was constructed by Cox proportional hazard regression with L2 regularization. Finally, bioinformatic analysis was performed to explore the underlying biological mechanisms of the PCFs.ResultsThe accuracy of the tumor detection model in distinguishing tumor patches from non-tumor patches achieved 99.3%. The optimal cluster number was determined to be 9. Therfore, 9 PCFs were calculated to construct the prognostic signature. The prognostic signature achieved a concordance index of 0.701 in the validation cohort. The Kaplan-Meier survival curves showed the prognostic signature had good risk stratification ability. Through the bioinformatic analysis, several PCF-associated genes were identified. These genes were enriched in various gene ontology terms.ConclusionThe developed prognostic signature can effectively predict PFS in patients with rectal cancer and exploration of the underlying biological mechanisms may help to promote its clinical translation.
Project description:IntroductionLung cancer (LC) is the most common cause of cancer-related deaths worldwide. Its early detection can be achieved with a CT scan. Two large randomised trials proved the efficacy of low-dose CT (LDCT)-based lung cancer screening (LCS) in high-risk populations. The decrease in specific mortality is 20%-25%.Nonetheless, implementing LCS on a large scale faces obstacles due to the low number of thoracic radiologists and CT scans available for the eligible population and the high frequency of false-positive screening results and the long period of indeterminacy of nodules that can reach up to 24 months, which is a source of prolonged anxiety and multiple costly examinations with possible side effects.Deep learning, an artificial intelligence solution has shown promising results in retrospective trials detecting lung nodules and characterising them. However, until now no prospective studies have demonstrated their importance in a real-life setting.Methods and analysisThis open-label randomised controlled study focuses on LCS for patients aged 50-80 years, who smoked more than 20 pack-years, whether active or quit smoking less than 15 years ago. Its objective is to determine whether assisting a multidisciplinary team (MDT) with a 3D convolutional network-based analysis of screening chest CT scans accelerates the definitive classification of nodules into malignant or benign. 2722 patients will be included with the aim to demonstrate a 3-month reduction in the delay between lung nodule detection and its definitive classification into benign or malignant.Ethics and disseminationThe sponsor of this study is the University Hospital of Nice. The study was approved for France by the ethical committee CPP (Comités de Protection des Personnes) Sud-Ouest et outre-mer III (No. 2022-A01543-40) and the Agence Nationale du Medicament et des produits de Santé (Ministry of Health) in December 2023. The findings of the trial will be disseminated through peer-reviewed journals and national and international conference presentations.Trial registration numberNCT05704920.
Project description:ObjectivesTo examine the accuracy and impact of artificial intelligence (AI) software assistance in lung cancer screening using CT.MethodsA systematic review of CE-marked, AI-based software for automated detection and analysis of nodules in CT lung cancer screening was conducted. Multiple databases including Medline, Embase and Cochrane CENTRAL were searched from 2012 to March 2023. Primary research reporting test accuracy or impact on reading time or clinical management was included. QUADAS-2 and QUADAS-C were used to assess risk of bias. We undertook narrative synthesis.ResultsEleven studies evaluating six different AI-based software and reporting on 19 770 patients were eligible. All were at high risk of bias with multiple applicability concerns. Compared with unaided reading, AI-assisted reading was faster and generally improved sensitivity (+5% to +20% for detecting/categorising actionable nodules; +3% to +15% for detecting/categorising malignant nodules), with lower specificity (-7% to -3% for correctly detecting/categorising people without actionable nodules; -8% to -6% for correctly detecting/categorising people without malignant nodules). AI assistance tended to increase the proportion of nodules allocated to higher risk categories. Assuming 0.5% cancer prevalence, these results would translate into additional 150-750 cancers detected per million people attending screening but lead to an additional 59 700 to 79 600 people attending screening without cancer receiving unnecessary CT surveillance.ConclusionsAI assistance in lung cancer screening may improve sensitivity but increases the number of false-positive results and unnecessary surveillance. Future research needs to increase the specificity of AI-assisted reading and minimise risk of bias and applicability concerns through improved study design.Prospero registration numberCRD42021298449.