Project description:Hepatocellular carcinoma (HCC) is the most familiar primary hepatic malignancy with a poor prognosis. The incidence of HCC and the associated deaths have risen in recent decades. Sorafenib is the first drug to be approved by the Food and Drug Administration (FDA) for routine use in the first-line therapy of patients with advanced HCC. However, only about 30% of patients with HCC will be benefited from sorafenib therapy, and drug resistance typically develops within 6 months. In recent years, the mechanisms of resistance to sorafenib have gained the attention of a growing number of researchers. A promising field of current studies is ferroptosis, which is a novel form of cell death differing from apoptosis, necroptosis, and autophagy. This process is dependent on the accumulation of intracellular iron and reactive oxygen species (ROS). Furthermore, the increase in intracellular iron levels and ROS can be significantly observed in cells resistant to sorafenib. This article reviews the mechanisms of resistance to sorafenib that are related to ferroptosis, evaluates the relationship between ferroptosis and sorafenib resistance, and explores new therapeutic approaches capable of reversing sorafenib resistance in HCC through the modulation of ferroptosis.
Project description:Hepatocellular carcinoma (HCC) has risen as the villain of cancer-related death globally, with a usual cruel forecasting. Sorafenib was officially approved by the FDA as first-line treatment for advanced HCC. Despite the brilliant promise revealed in research, actual clinical results are limited due to the widespread appearance of drug resistance. The tumor microenvironment (TME) has been correlated to pharmacological resistance, implying that existing cellular level strategies may be insufficient to improve therapy success. The role of autophagy in cancer is a two-edged sword. On one hand, autophagy permits malignant cells to overcome stress, such as hypoxic TME and therapy-induced starvation. Autophagy, on the other hand, plays an important role in damage suppression, which can reduce carcinogenesis. As a result, controlling autophagy is certainly a viable technique in cancer therapy. The goal of this study was to investigate at the impact of autophagy manipulation with sorafenib therapy by analyzing autophagy induction and inhibition to sorafenib monotherapy in rats with HCC. Western blot, ELISA, immunohistochemistry, flow cytometry, and quantitative-PCR were used to investigate autophagy, apoptosis, and the cell cycle. Routine biochemical and pathological testing was performed. Ultracellular features and autophagic entities were observed using a transmission electron microscope (TEM). Both regimens demonstrated significant reductions in chemotherapeutic resistance and hepatoprotective effects. According to the findings, both autophagic inhibitors and inducers are attractive candidates for combating sorafenib-induced resistance in HCC.
Project description:Acquired resistance towards sorafenib treatment was found in HCC patients, which results in poor prognosis. To investigate the enhanced metastatic potential of sorafenib resistance cells, sorafenib-resistant (SorR) cell lines were established by long-term exposure of the HCC cells to the maximum tolerated dose of sorafenib. Cell proliferation assay and qPCR of ABC transporter genes (ABCC1-3) were first performed to confirm the resistance of cells. Migration and invasion assays, and immunoblotting analysis on the expression of epithelial to mesenchymal transition (EMT) regulatory proteins were performed to study the metastatic potential of SorR cells. The expression of CD44 and CD133 were studied by flow cytometry and the gene expressions of pluripotency factors were studied by qPCR to demonstrate the enrichment of cancer stem cells (CSCs) in SorR cells. Control (CTL) and SorR cells were also injected orthotopically to the livers of NOD-SCID mice to investigate the development of lung metastasis. Increased expressions of ABCC1-3 were found in SorR cells. Enhanced migratory and invasive abilities of SorR cells were observed. The changes in expression of EMT regulatory proteins demonstrated an activation of the EMT process in SorR cells. Enriched proportion of CD44(+) and CD44(+)CD133(+) cells were also observed in SorR cells. All (8/8) mice injected with SorR cells demonstrated lung metastasis whereas only 1/8 mouse injected with CTL cells showed lung metastasis. HCC cells with sorafenib resistance demonstrated a higher metastatic potential, which may be due to the activated EMT process. Enriched CSCs were also demonstrated in the sorafenib resistant cells. This study suggests that advanced HCC patients with acquired sorafenib resistance may have enhanced tumor growth or distant metastasis, which raises the concern of long-term sorafenib treatment in advanced HCC patients who have developed resistance of sorafenib.
Project description:Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. Sorafenib is the first multi-tyrosine kinase inhibitor approved for HCC and it has represented the standard of care for advanced HCC for almost 10 years, offering a survival benefit when compared to placebo. However, this benefit is limited, showing rare objective responses and a disease control rate approaching 50-60%, with most patients experiencing disease progression at 6 months. These scant results dictate the urgent need for strategies to overcome both primary and acquired resistance. Herein we report several mechanisms supporting resistance to sorafenib in HCC patients, including activation of oncogenic pathways. Among these, the AKT/mTOR pathway plays a crucial role being at the crossroad of multiple driving events. Autophagy, multidrug-resistant phenotype, hypoxia-related mechanisms and endoplasmic reticulum stress are gaining more and more relevance as crucial events driving the response to anticancer drugs, including sorafenib. Several HCC-specific miRNAs take part to the regulation of these cellular processes. Remarkably, molecularly targeted strategies able to overcome resistance in these settings have also been reported. So far, the vast majority of data has been derived from laboratory studies, which means the need for an extensive validation. Indeed, most of the possible drug associations displaying promising effects in improving sorafenib efficacy herein described derive from preclinical explorations. Notably, data obtained in animal models can be inconsistent with regard to the human disease for efficacy, safety, side effects, best formulation and pharmacokinetics. However, they represent the necessary preliminary step to improve the management of advanced HCC.
Project description:Human hepatocellular carcinoma (HCC) is the most frequent primary tumor of the liver and the third cause of cancer-related deaths. The multikinase inhibitor sorafenib is a systemic drug for unresectable HCC. The identification of molecular biomarkers for the early diagnosis of HCC and responsiveness to treatment are needed. In this work, we performed an exploratory study to investigate the longitudinal levels of cell-free long ncRNA GAS5 and microRNAs miR-126-3p and -23b-3p in a cohort of 7 patients during the period of treatment with sorafenib. We used qPCR to measure the amounts of GAS5 and miR-126-3p and droplet digital PCR (ddPCR) to measure the levels of miR-23b-3p. Patients treated with sorafenib displayed variable levels of GAS5, miR-126-3p and miR-23b-3p at different time-points of follow-up. miR-23b-3p was further measured by ddPCR in 37 healthy individuals and 25 untreated HCC patients. The amount of miR-23b-3p in the plasma of untreated HCC patients was significantly downregulated if compared to healthy individuals. The ROC curve analysis underlined its diagnostic relevance. In conclusion, our results highlight a potential clinical significance of circulating miR-23b-3p and an exploratory observation on the longitudinal plasmatic levels of GAS5, miR-126-3p and miR-23b-3p during sorafenib treatment.
Project description:Mitochondrial damage-associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA), TFAM (transcription factor A, mitochondrial), and ATP, which play crucial roles in the regulation of inflammatory environment in human diseases. However, the role of mitochondrial DAMPs in regulating tumor microenvironment (TME) remains unclear. Herein, we demonstrate that infiltration of M2-type tumor-associated macrophages (TAMs) was correlated with the resistance of hepatocellular carcinoma (HCC) to sorafenib. We found that cell-free mtDNA in the plasma was significantly increased in sorafenib-resistant HCC mice. Sorafenib induced mitochondrial dysfunction and promoted the release of mtDNA into extracellular matrix of HCC. Macrophages retook the mtDNA in the TME of HCC, activated TLR9 signaling, and promoted the activation of NF-κB and the polarization of TAMs into M2. Application of DNase I to digest mtDNA or depletion of macrophages with clodronate liposomes reduced M2 macrophage infiltration, decreased the growth of HCC, and sensitized the tumors to sorafenib. Furthermore, we showed that blocking the activation of TLR9 enhanced the therapeutic effect of sorafenib in HCC. Together, we demonstrate that sorafenib treatment leads to the release of mtDNA into TME in HCC, which in turn facilitates the polarization of TAMs into M2 macrophages through TLR9 activation and aggravates the resistance of HCC to sorafenib. Our study reveals a novel mechanism underlying circulating mtDAMPs in remodeling the HCC microenvironment by reprograming the TAMs and provides a new strategy for improving the therapeutic effect of sorafenib and overcoming its resistance in HCC.
Project description:Sorafenib resistance remains a major obstacle for the effective treatment of hepatocellular carcinoma (HCC), and a number of miRNAs contribute to this resistance. However, the regulatory networks of miRNAs are very complex, thus inhibiting a single miRNA may sequentially activate other compensatory pathways. In the present study, we generated an artificial long non-coding RNA (AlncRNA), which simultaneously targets multiple miRNAs including miR-21, miR-153, miR-216a, miR-217, miR-494 and miR-10a-5p. These miRNAs have been shown to be upregulated in sorafenib-resistant cells and participate in the mechanisms underlying sorafenib resistance. The AlncRNA contains tandem sequences of 6 copies of the complementary binding sequences to the target miRNAs and is expressed by an adenoviral vector (Ad5-AlncRNA). Infection of Ad5-AlncRNA into sorafenib-resistant HCC cells blocked the function of miRNAs, and sequentially inhibited the downregulation of PTEN and activation of AKT. Ad5-AlncRNA significantly inhibited proliferation and induced apoptosis of sorafenib-resistant cells and enhanced the effects of sorafenib in vitro and in animal models. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to Ad5-AlncRNA, while its induction had the opposite effect. These results indicate that targeting multiple miRNAs by the artificial lncRNA could be a potential promising strategy for overcoming sorafenib resistance in the treatment of HCC.
Project description:BackgroundSorafenib is a first-line treatment for hepatocellular carcinoma (HCC); however, acquired resistance often results in a poor prognosis, indicating a need for more effective therapies. Sorafenib induces cell death through an iron-dependent mechanism known as ferroptosis, which is closely associated with the onset and progression of HCC.MethodsThis study investigated the role of ACSL3 in sorafenib resistance and ferroptosis in HCC. The expression of ACSL3 was analyzed in HCC tissues and cell lines. Ferroptosis levels and cell viability were assessed in ACSL3-silenced HCC cells treated with sorafenib. The regulatory relationship between the transcription factor MEF2D and ACSL3 was evaluated using promoter binding assays and gene expression analysis.ResultsACSL3 was aberrantly expressed in HCC and promoted the progression of non-alcoholic fatty liver disease (NAFLD) to HCC. Elevated ACSL3 expression inhibited ferroptosis and enhanced resistance to sorafenib. The transcription factor MEF2D directly regulated the upregulation of ACSL3 expression. MEF2D bound to the promoter regions of ACSL3 to enhance its transcription and negatively regulate ferroptosis in HCC.ConclusionThis study demonstrated for the first time that MEF2D regulated ACSL3 expression and mediated sorafenib resistance by inhibiting ferroptosis in HCC, providing a potential therapeutic target for improving HCC outcomes.
Project description:Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common. By using genome-wide CRISPR/Cas9 library screening, we identify phosphoglycerate dehydrogenase (PHGDH), the first committed enzyme in the serine synthesis pathway (SSP), as a critical driver for Sorafenib resistance. Sorafenib treatment activates SSP by inducing PHGDH expression. With RNAi knockdown and CRISPR/Cas9 knockout models, we show that inactivation of PHGDH paralyzes the SSP and reduce the production of αKG, serine, and NADPH. Concomitantly, inactivation of PHGDH elevates ROS level and induces HCC apoptosis upon Sorafenib treatment. More strikingly, treatment of PHGDH inhibitor NCT-503 works synergistically with Sorafenib to abolish HCC growth in vivo. Similar findings are also obtained in other FDA-approved tyrosine kinase inhibitors (TKIs), including Regorafenib or Lenvatinib. In summary, our results demonstrate that targeting PHGDH is an effective approach to overcome TKI drug resistance in HCC.