Project description:De novo, in-silico design of molecules is a challenging problem with applications in drug discovery and material design. We introduce a masked graph model, which learns a distribution over graphs by capturing conditional distributions over unobserved nodes (atoms) and edges (bonds) given observed ones. We train and then sample from our model by iteratively masking and replacing different parts of initialized graphs. We evaluate our approach on the QM9 and ChEMBL datasets using the GuacaMol distribution-learning benchmark. We find that validity, KL-divergence and Fréchet ChemNet Distance scores are anti-correlated with novelty, and that we can trade off between these metrics more effectively than existing models. On distributional metrics, our model outperforms previously proposed graph-based approaches and is competitive with SMILES-based approaches. Finally, we show our model generates molecules with desired values of specified properties while maintaining physiochemical similarity to the training distribution.
Project description:Computationally generating new synthetically accessible compounds with high affinity and low toxicity is a great challenge in drug design. Machine learning models beyond conventional pharmacophoric methods have shown promise in the generation of novel small-molecule compounds but require significant tuning for a specific protein target. Here, we introduce a method called selective iterative latent variable refinement (SILVR) for conditioning an existing diffusion-based equivariant generative model without retraining. The model allows the generation of new molecules that fit into a binding site of a protein based on fragment hits. We use the SARS-CoV-2 main protease fragments from Diamond XChem that form part of the COVID Moonshot project as a reference dataset for conditioning the molecule generation. The SILVR rate controls the extent of conditioning, and we show that moderate SILVR rates make it possible to generate new molecules of similar shape to the original fragments, meaning that the new molecules fit the binding site without knowledge of the protein. We can also merge up to 3 fragments into a new molecule without affecting the quality of molecules generated by the underlying generative model. Our method is generalizable to any protein target with known fragments and any diffusion-based model for molecule generation.
Project description:Generation of drug-like molecules with high binding affinity to target proteins remains a difficult and resource-intensive task in drug discovery. Existing approaches primarily employ reinforcement learning, Markov sampling, or deep generative models guided by Gaussian processes, which can be prohibitively slow when generating molecules with high binding affinity calculated by computationally-expensive physics-based methods. We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique. LIMO employs a variational autoencoder-generated latent space and property prediction by two neural networks in sequence to enable faster gradient-based reverse-optimization of molecular properties. Comprehensive experiments show that LIMO performs competitively on benchmark tasks and markedly outperforms state-of-the-art techniques on the novel task of generating drug-like compounds with high binding affinity, reaching nanomolar range against two protein targets. We corroborate these docking-based results with more accurate molecular dynamics-based calculations of absolute binding free energy and show that one of our generated drug-like compounds has a predicted K D (a measure of binding affinity) of 6 · 10-14 M against the human estrogen receptor, well beyond the affinities of typical early-stage drug candidates and most FDA-approved drugs to their respective targets. Code is available at https://github.com/Rose-STL-Lab/LIMO.
Project description:Informative representation of molecules is a crucial prerequisite in AI-driven drug design and discovery. Pharmacophore information including functional groups and chemical reactions can indicate molecular properties, which have not been fully exploited by prior atom-based molecular graph representation. To obtain a more informative representation of molecules for better molecule property prediction, we propose the Pharmacophoric-constrained Heterogeneous Graph Transformer (PharmHGT). We design a pharmacophoric-constrained multi-views molecular representation graph, enabling PharmHGT to extract vital chemical information from functional substructures and chemical reactions. With a carefully designed pharmacophoric-constrained multi-view molecular representation graph, PharmHGT can learn more chemical information from molecular functional substructures and chemical reaction information. Extensive downstream experiments prove that PharmHGT achieves remarkably superior performance over the state-of-the-art models the performance of our model is up to 1.55% in ROC-AUC and 0.272 in RMSE higher than the best baseline model) on molecular properties prediction. The ablation study and case study show that our proposed molecular graph representation method and heterogeneous graph transformer model can better capture the pharmacophoric structure and chemical information features. Further visualization studies also indicated a better representation capacity achieved by our model.
Project description:Artificial intelligence holds great promise for the design of antimicrobial peptides (AMPs); however, current models face limitations in generating AMPs with sufficient novelty and diversity, and they are rarely applied to the generation of antifungal peptides. Here, we develop an alternative pipeline grounded in a diffusion model and molecular dynamics for the de novo design of AMPs. The peptides generated by our pipeline have lower similarity and identity than those of other reported methodologies. Among the 40 peptides synthesized for an experimental validation, 25 exhibit either antibacterial or antifungal activity. AMP-29 shows selective antifungal activity against Candida glabrata and in vivo antifungal efficacy in a murine skin infection model. AMP-24 exhibits potent in vitro activity against Gram-negative bacteria and in vivo efficacy against both skin and lung Acinetobacter baumannii infection models. The proposed approach offers a pipeline for designing diverse AMPs to counteract the threat of antibiotic resistance.
Project description:Structure-based generative chemistry is essential in computer-aided drug discovery by exploring a vast chemical space to design ligands with high binding affinity for targets. However, traditional in silico methods are limited by computational inefficiency, while machine learning approaches face bottlenecks due to auto-regressive sampling. To address these concerns, we have developed a conditional deep generative model, PMDM, for 3D molecule generation fitting specified targets. PMDM consists of a conditional equivariant diffusion model with both local and global molecular dynamics, enabling PMDM to consider the conditioned protein information to generate molecules efficiently. The comprehensive experiments indicate that PMDM outperforms baseline models across multiple evaluation metrics. To evaluate the applications of PMDM under real drug design scenarios, we conduct lead compound optimization for SARS-CoV-2 main protease (Mpro) and Cyclin-dependent Kinase 2 (CDK2), respectively. The selected lead optimization molecules are synthesized and evaluated for their in-vitro activities against CDK2, displaying improved CDK2 activity.
Project description:There remains an important need for the development of image reconstruction methods that can produce diagnostically useful images from undersampled measurements. In magnetic resonance imaging (MRI), for example, such methods can facilitate reductions in data-acquisition times. Deep learning-based methods hold potential for learning object priors or constraints that can serve to mitigate the effects of data-incompleteness on image reconstruction. One line of emerging research involves formulating an optimization-based reconstruction method in the latent space of a generative deep neural network. However, when generative adversarial networks (GANs) are employed, such methods can result in image reconstruction errors if the sought-after solution does not reside within the range of the GAN. To circumvent this problem, in this work, a framework for reconstructing images from incomplete measurements is proposed that is formulated in the latent space of invertible neural network-based generative models. A novel regularization strategy is introduced that takes advantage of the multiscale architecture of certain invertible neural networks, which can result in improved reconstruction performance over classical methods in terms of traditional metrics. The proposed method is investigated for reconstructing images from undersampled MRI data. The method is shown to achieve comparable performance to a state-of-the-art generative model-based reconstruction method while benefiting from a deterministic reconstruction procedure and easier control over regularization parameters.
Project description:MotivationDenoising diffusion probabilistic models (DDPMs) have recently taken the field of generative modeling by storm, pioneering new state-of-the-art results in disciplines such as computer vision and computational biology for diverse tasks ranging from text-guided image generation to structure-guided protein design. Along this latter line of research, methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a DDPM framework. However, such methods are unable to learn important geometric and physical properties of 3D molecules during molecular graph generation, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which negatively impacts their ability to effectively scale to datasets of large 3D molecules.ResultsIn this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset as well as for the larger GEOM-Drugs dataset. Importantly, we demonstrate that the geometry-complete denoising process GCDM learns for 3D molecule generation allows the model to generate realistic and stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but also that GCDM's geometric features can effectively be repurposed to directly optimize the geometry and chemical composition of existing 3D molecules for specific molecular properties, demonstrating new, real-world versatility of molecular diffusion models.AvailabilityOur source code and data are freely available on GitHub.
Project description:Generative deep learning methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a denoising diffusion framework. However, such methods are unable to learn important geometric properties of 3D molecules, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which notably hinders their ability to generate valid large 3D molecules. In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset and the larger GEOM-Drugs dataset, respectively. Importantly, we demonstrate that GCDM's generative denoising process enables the model to generate a significant proportion of valid and energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules for molecular stability and property specificity, demonstrating new versatility of molecular diffusion models. Code and data are freely available on GitHub .
Project description:Social networks represent two different facets of social life: (1) stable paths for diffusion, or the spread of something through a connected population, and (2) random draws from an underlying social space, which indicate the relative positions of the people in the network to one another. The dual nature of networks creates a challenge - if the observed network ties are a single random draw, is it realistic to expect that diffusion only follows the observed network ties? This study takes a first step towards integrating these two perspectives by introducing a social space diffusion model. In the model, network ties indicate positions in social space, and diffusion occurs proportionally to distance in social space. Practically, the simulation occurs in two parts. First, positions are estimated using a statistical model (in this example, a latent space model). Then, second, the predicted probabilities of a tie from that model - representing the distances in social space - or a series of networks drawn from those probabilities - representing routine churn in the network - are used as weights in a weighted averaging framework. Using longitudinal data from high school friendship networks, I explore the properties of the model. I show that the model produces smoothed diffusion results, which predict attitudes in future waves 10% better than a diffusion model using the observed network, and up to 5% better than diffusion models using alternative, non-model-based smoothing approaches.