Project description:Computational prediction of Protein-Ligand Interaction (PLI) is an important step in the modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI prediction. However, the performance is highly dependent on protein and ligand features utilized for the DNN model. Moreover, in current models, the deciphering of how protein features determine the underlying principles that govern PLI is not trivial. In this work, we developed a DNN framework named SSnet that utilizes secondary structure information of proteins extracted as the curvature and torsion of the protein backbone to predict PLI. We demonstrate the performance of SSnet by comparing against a variety of currently popular machine and non-Machine Learning (ML) models using various metrics. We visualize the intermediate layers of SSnet to show a potential latent space for proteins, in particular to extract structural elements in a protein that the model finds influential for ligand binding, which is one of the key features of SSnet. We observed in our study that SSnet learns information about locations in a protein where a ligand can bind, including binding sites, allosteric sites and cryptic sites, regardless of the conformation used. We further observed that SSnet is not biased to any specific molecular interaction and extracts the protein fold information critical for PLI prediction. Our work forms an important gateway to the general exploration of secondary structure-based Deep Learning (DL), which is not just confined to protein-ligand interactions, and as such will have a large impact on protein research, while being readily accessible for de novo drug designers as a standalone package.
Project description:The substantial cost of new drug research and development has consistently posed a huge burden for both pharmaceutical companies and patients. In order to lower the expenditure and development failure rate, repurposing existing and approved drugs by identifying interactions between drug molecules and target proteins based on computational methods have gained growing attention. Here, we propose the DeepLPI, a novel deep learning-based model that mainly consists of ResNet-based 1-dimensional convolutional neural network (1D CNN) and bi-directional long short term memory network (biLSTM), to establish an end-to-end framework for protein-ligand interaction prediction. We first encode the raw drug molecular sequences and target protein sequences into dense vector representations, which go through two ResNet-based 1D CNN modules to derive features, respectively. The extracted feature vectors are concatenated and further fed into the biLSTM network, followed by the MLP module to finally predict protein-ligand interaction. We downloaded the well-known BindingDB and Davis dataset for training and testing our DeepLPI model. We also applied DeepLPI on a COVID-19 dataset for externally evaluating the prediction ability of DeepLPI. To benchmark our model, we compared our DeepLPI with the baseline methods of DeepCDA and DeepDTA, and observed that our DeepLPI outperformed these methods, suggesting the high accuracy of the DeepLPI towards protein-ligand interaction prediction. The high prediction performance of DeepLPI on the different datasets displayed its high capability of protein-ligand interaction in generalization, demonstrating that the DeepLPI has the potential to pinpoint new drug-target interactions and to find better destinations for proven drugs.
Project description:Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately both physical modeling and machine learning methods suffer from poor precision and/or recall. In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, "PInet" (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition. PInet scripts and models are available at https://github.com/FTD007/PInet. Supplementary data are available at Bioinformatics online.
Project description:Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models for RNA-protein interaction prediction. Here, we introduce ZHMolGraph, which integrates graph neural network and unsupervised large language models to predict RNA-protein interaction. We validate ZHMolGraph predictions on two benchmark datasets and outperform the current best methods. For the dataset of entirely unknown RNAs and proteins, ZHMolGraph shows an improvement in achieving high AUROC of 79.8% and AUPRC of 82.0%. This represents a substantial improvement of 7.1%-28.7% in AUROC and 4.6%-30.0% in AUPRC over other methods. We utilize ZHMolGraph to enhance the challenging SARS-CoV-2 RPI and unbound RNA-protein complex predictions. Such enhancements make ZHMolGraph a reliable option for genome-wide RNA-protein prediction. ZHMolGraph holds broad potential for modeling and designing RNA-protein complexes.
Project description:The launch of AlphaFold series has brought deep-learning techniques into the molecular structural science. As another crucial problem, structure-based prediction of protein-ligand binding affinity urgently calls for advanced computational techniques. Is deep learning ready to decode this problem? Here we review mainstream structure-based, deep-learning approaches for this problem, focusing on molecular representations, learning architectures and model interpretability. A model taxonomy has been generated. To compensate for the lack of valid comparisons among those models, we realized and evaluated representatives from a uniform basis, with the advantages and shortcomings discussed. This review will potentially benefit structure-based drug discovery and related areas.
Project description:BackgroundProtein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested.ResultsWe used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods.ConclusionsTo our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.
Project description:Peptide-protein interactions are involved in various fundamental cellular functions and their identification is crucial for designing efficacious peptide therapeutics. Recently, a number of computational methods have been developed to predict peptide-protein interactions. However, most of the existing prediction approaches heavily depend on high-resolution structure data. Here, we present a deep learning framework for multi-level peptide-protein interaction prediction, called CAMP, including binary peptide-protein interaction prediction and corresponding peptide binding residue identification. Comprehensive evaluation demonstrated that CAMP can successfully capture the binary interactions between peptides and proteins and identify the binding residues along the peptides involved in the interactions. In addition, CAMP outperformed other state-of-the-art methods on binary peptide-protein interaction prediction. CAMP can serve as a useful tool in peptide-protein interaction prediction and identification of important binding residues in the peptides, which can thus facilitate the peptide drug discovery process.
Project description:Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet-a new deep neural network-to predict the aptamer-protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer-protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet .
Project description:Protein-protein interactions are closely relevant to protein function and drug discovery. Hence, accurately identifying protein-protein interactions will help us to understand the underlying molecular mechanisms and significantly facilitate the drug discovery. However, the majority of existing computational methods for protein-protein interactions prediction are focused on the feature extraction and combination of features and there have been limited gains from the state-of-the-art models. In this work, a new residue representation method named Res2vec is designed for protein sequence representation. Residue representations obtained by Res2vec describe more precisely residue-residue interactions from raw sequence and supply more effective inputs for the downstream deep learning model. Combining effective feature embedding with powerful deep learning techniques, our method provides a general computational pipeline to infer protein-protein interactions, even when protein structure knowledge is entirely unknown. The proposed method DeepFE-PPI is evaluated on the S. Cerevisiae and human datasets. The experimental results show that DeepFE-PPI achieves 94.78% (accuracy), 92.99% (recall), 96.45% (precision), 89.62% (Matthew's correlation coefficient, MCC) and 98.71% (accuracy), 98.54% (recall), 98.77% (precision), 97.43% (MCC), respectively. In addition, we also evaluate the performance of DeepFE-PPI on five independent species datasets and all the results are superior to the existing methods. The comparisons show that DeepFE-PPI is capable of predicting protein-protein interactions by a novel residue representation method and a deep learning classification framework in an acceptable level of accuracy. The codes along with instructions to reproduce this work are available from https://github.com/xal2019/DeepFE-PPI.
Project description:To fight against the present pandemic scenario of COVID-19 outbreak, medication with drugs and vaccines is extremely essential other than ventilation support. In this paper, we present a list of ligands which are expected to have the highest binding affinity with the S-glycoprotein of 2019-nCoV and thus can be used to make the drug for the novel coronavirus. Here, we implemented an architecture using 1D convolutional networks to predict drug-target interaction (DTI) values. The network was trained on the KIBA (Kinase Inhibitor Bioactivity) dataset. With this network, we predicted the KIBA scores (which gives a measure of binding affinity) of a list of ligands against the S-glycoprotein of 2019-nCoV. Based on these KIBA scores, we are proposing a list of ligands (33 top ligands based on best interactions) which have a high binding affinity with the S-glycoprotein of 2019-nCoV and thus can be used for the formation of drugs.