Ontology highlight
ABSTRACT: Motivation
Single-cell clustering plays a crucial role in distinguishing between cell types, facilitating the analysis of cell heterogeneity mechanisms. While many existing clustering methods rely solely on gene expression data obtained from single-cell RNA sequencing techniques to identify cell clusters, the information contained in mono-omic data is often limited, leading to suboptimal clustering performance. The emergence of single-cell multi-omics sequencing technologies enables the integration of multiple omics data for identifying cell clusters, but how to integrate different omics data effectively remains challenging. In addition, designing a clustering method that performs well across various types of multi-omics data poses a persistent challenge due to the data's inherent characteristics.Results
In this paper, we propose a graph-regularized multi-view ensemble clustering (GRMEC-SC) model for single-cell clustering. Our proposed approach can adaptively integrate multiple omics data and leverage insights from multiple base clustering results. We extensively evaluate our method on five multi-omics datasets through a series of rigorous experiments. The results of these experiments demonstrate that our GRMEC-SC model achieves competitive performance across diverse multi-omics datasets with varying characteristics.Availability and implementation
Implementation of GRMEC-SC, along with examples, can be found on the GitHub repository: https://github.com/polarisChen/GRMEC-SC.
SUBMITTER: Chen F
PROVIDER: S-EPMC11015955 | biostudies-literature | 2024 Mar
REPOSITORIES: biostudies-literature
Chen Fuqun F Zou Guanhua G Wu Yongxian Y Ou-Yang Le L
Bioinformatics (Oxford, England) 20240301 4
<h4>Motivation</h4>Single-cell clustering plays a crucial role in distinguishing between cell types, facilitating the analysis of cell heterogeneity mechanisms. While many existing clustering methods rely solely on gene expression data obtained from single-cell RNA sequencing techniques to identify cell clusters, the information contained in mono-omic data is often limited, leading to suboptimal clustering performance. The emergence of single-cell multi-omics sequencing technologies enables the ...[more]