Project description:Analyzing the primary factors of potential evapotranspiration (PET) dynamic is fundamental to accurately estimating crop yield, evaluating environmental impacts, and understanding water and carbon cycles. Previous studies have focused on regionally average regional PET and its dominant factors. Spatial distributions of PET trends and their main causes have not been fully investigated. The Mann-Kendall test was used to determine the significance of long-term trends in PET and five meteorological factors (net radiation, wind speed, air temperature, vapor pressure deficit, relative humidity) at 56 meteorological stations in the Sichuan-Chongqing region from 1970 to 2020. Furthermore, this present study combining and quantitatively illustrated sensitivities and contributions of the meteorological factors to change in annual and seasonal PET. There was a positive trend in PET for approximately 58%, 68%, 38%, 73% and 73% of all surveyed stations at annual, spring, summer, autumn and winter, respectively. Contribution analysis exhibited that the driving factors for the PET variation varied spatially and seasonally. For stations with an upward PET trend, vapor pressure deficit was a dominant factor at all time scales. For stations with a downward PET trend, annual changes in PET mainly resulted from decreased wind speed, as did changes in spring, autumn and winter; decreasing net radiation was the dominant factor in summer. The positive effect of the vapor pressure deficit offset the negative effects of wind speed and net radiation, leading to the increasing PET in this area as a whole. Sensitivity analysis showed that net radiation and relative humidity were the two most sensitive variables for PET, followed by vapor pressure deficit in this study area. Results from the two mathematical approaches were not perfect match, because the change magnitude of the meteorological factors is also responsible for the effects of meteorological factors on PET variation to some extent. However, conducting sensitivity and contribution analysis in this study can avoid the uncertainties from using a single method and provides detailed and well-understood information for interpreting the influence of global climate change on the water cycle and improving local water management.
Project description:Reference crop evapotranspiration (ET o) is a critically important parameter for climatological, hydrological and agricultural management. The FAO56 Penman-Monteith (PM) equation has been recommended as the standardized ET o (ET o,s) equation, but it has a high requirements of climatic data. There is a practical need for finding a best alternative method to estimate ET o in the regions where full climatic data are lacking. A comprehensive comparison for the spatiotemporal variations, relative errors, standard deviations and Nash-Sutcliffe efficacy coefficients of monthly or annual ET o,s and ET o,i (i = 1, 2, …, 10) values estimated by 10 selected methods (i.e., Irmak et al., Makkink, Priestley-Taylor, Hargreaves-Samani, Droogers-Allen, Berti et al., Doorenbos-Pruitt, Wright and Valiantzas, respectively) using data at 552 sites over 1961-2013 in mainland China. The method proposed by Berti et al. (2014) was selected as the best alternative of FAO56-PM because it was simple in computation process, only utilized temperature data, had generally good accuracy in describing spatiotemporal characteristics of ET o,s in different sub-regions and mainland China, and correlated linearly to the FAO56-PM method very well. The parameters of the linear correlations between ET o of the two methods are calibrated for each site with the smallest determination of coefficient being 0.87.
Project description:Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.
Project description:To investigate temporal trends in coronavirus disease 2019 (COVID-19)-related outcomes and to evaluate whether the impacts of potential risk factors and disparities changed over time, we conducted a retrospective cohort study with 249 075 patients tested or treated for COVID-19 at Michigan Medicine (MM), from 10 March 2020 to 3 May 2021. Among these patients, 26 289 were diagnosed with COVID-19. According to the calendar time in which they first tested positive, the COVID-19-positive cohort were stratified into three-time segments (T1: March–June, 2020; T2: July–December, 2020; T3: January–May, 2021). Potential risk factors that we examined included demographics, residential-level socioeconomic characteristics and preexisting comorbidities. The main outcomes included COVID-19-related hospitalisation and intensive care unit (ICU) admission. The hospitalisation rate for COVID-positive patients decreased from 36.2% in T1 to 14.2% in T3, and the ICU admission rate decreased from 16.9% to 2.9% from T1 to T3. These findings confirm that COVID-19-related hospitalisation and ICU admission rates were decreasing throughout the pandemic from March 2020 to May 2021. Black patients had significantly higher (compared to White patients) hospitalisation rates (19.6% vs. 11.0%) and ICU admission rates (6.3% vs. 2.8%) in the full COVID-19-positive cohort. A time-stratified analysis showed that racial disparities in hospitalisation rates persisted over time and the estimates of the odds ratios (ORs) stayed above unity in both unadjusted [full cohort: OR = 1.98, 95% confidence interval (CI) (1.79, 2.19); T1: OR = 1.70, 95% CI (1.36, 2.12); T2: OR = 1.40, 95% CI (1.17, 1.68); T3: OR = 1.55, 95% CI (1.29, 1.86)] and adjusted analysis, accounting for differences in demographics, socioeconomic status, and preexisting comorbid conditions (full cohort: OR = 1.45, 95% CI (1.25, 1.68); T1: OR = 1.26, 95% CI (0.90, 1.76); T2: OR = 1.29, 95% CI (1.01, 1.64); T3: OR = 1.29, 95% CI (1.00, 1.67)).
Project description:1. Lymphocytes from pig mesenteric lymph node have low permeability to K+ (Rb+), Na+ and Cl-. None of these ions is in Nernst equilibrium with the plasma-membrane potential (delta psi p). 2. delta psi p can be calculated from the transmembrane distribution of the permeant cation methyltriphenylphosphonium (TPMP+) in the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) to abolish uptake into intracellular mitochondria. In normal culture medium delta psi p is 56 mV. 3. A similar potential is found in T-enriched pig cells and in mouse thymocytes. 4. The contribution of electrogenic (Na+ + K+)ATPase to delta psi p is about 7 mV. 5. The remainder of the lymphocyte delta psi p is a polyionic potential set up by K+ and Cl- with a permeability coefficient for Cl- of similar magnitude to that for K+.
Project description:Evapotranspiration (ET) is a major component linking the water, energy, and carbon cycles. Understanding changes in ET and the relative contribution rates of human activity and of climate change at the basin scale is important for sound water resources management. In this study, changes in ET in the Heihe agricultural region in northwest China during 1984-2014 were examined using remotely-sensed ET data with the Soil and Water Assessment Tool (SWAT). Correlation analysis identified the dominant factors that influence change in ET per unit area and those that influence change in total ET. Factor analysis identified the relative contribution rates of the dominant factors in each case. The results show that human activity, which includes factors for agronomy and irrigation, and climate change, including factors for precipitation and relative humidity, both contribute to increases in ET per unit area at rates of 60.93% and 28.01%, respectively. Human activity, including the same factors, and climate change, including factors for relative humidity and wind speed, contribute to increases in total ET at rates of 53.86% and 35.68%, respectively. Overall, in the Heihe agricultural region, the contribution of human agricultural activities to increased ET was significantly greater than that of climate change.
Project description:BackgroundRespiratory morbidity and mortality during childhood remains a major challenge for global health. Due to the rapid economic development in Chongqing, we expect substantial temporal changes in respiratory health status and environmental risk factors in children. By leveraging a historical dataset, this study aims to assess the changes in prevalence of respiratory symptoms and diseases, residential exposure factors, and their associations in school-age children over a period of 25 years.MethodsThis study involved two cross-sectional surveys conducted in Chongqing with a 25-year interval (2017 vs. 1993). Purpose sampling was used to conduct questionnaire surveys on school-age children in both surveys. Information collected include children's respiratory health outcomes, family residential exposures, demographic information, and parental respiratory disease history. The changes of residential exposures as well as demographics were determined by chi-square test. Odds ratios were calculated to compare the prevalence of children's respiratory symptoms and diseases between the two periods. Associations between children's respiratory outcomes and exposure indicators were assessed using multivariate logistic regressions.ResultsThe majority of residential exposure indicators improved in 2017, including sleep in shared room, cooking with coal, poor kitchen ventilation, cooking frequency, and parental smoking. Compared to the 1993 study, the adjusted risk for children's wheezing was lower (OR: 0.38, 95% CI: 0.29, 0.49), but the risk for bronchitis was higher (OR: 1.89, 95% CI: 1.54, 2.31) in the 2017 study. Poor kitchen ventilation and parental smoking were linked to an increased risk of children's wheezing (OR: 1.39, 95% CI: 1.02, 1.90) and bronchitis (OR: 1.51, 95% CI: 1.02, 2.21), respectively, while heating in winter was linked to an increased risk of phlegm (OR: 1.40, 95% CI: 1.03, 1.90) and wheezing (OR: 1.47, 95% CI: 1.07, 2.01) in the 1993 study. However, these residential exposure factors were no longer associated with the children's respiratory diseases in the 2017 study.ConclusionsOur study found improvement of residential exposures in Chongqing, a decline of prevalence of children's wheezing but an increase of that of bronchitis from 1993 to 2017. Poor kitchen ventilation, heating in winter, and parental smoking were significant risk factors in the 1993 survey but, with significantly reduced prevalence in 2017, were not significantly associated with children's respiratory morbidity in the latter survey.
Project description:A fundamental goal of ecologists is to determine the large-scale gradients in species richness. The threatened plants are the priority of such studies because of their narrow distribution and confinement to a specific habitat. Studying the distribution patterns of threatened plants is crucial for identifying global conservation prioritization. In this study, the richness pattern of threatened plant species along spatial and elevation gradients in Sichuan Province of China was investigated, considering climatic, habitat-heterogeneity (HHET), geometric constraint and human-induced factors. The species richness pattern was analyzed, and the predictor variables, including mean annual temperature (MAT), mean annual precipitation (MAP), potential evapotranspiration (PET), HHET, and disturbance (DIST), to species richness were linked using the geographical distribution data of threatened species compiled at a spatial resolution of 20 km × 20 km. Generalized linear models and structural equation modelling were used to determine the individual and combined effects of each variable on species richness patterns. Results showed a total of 137 threatened plant species were distributed between 200 and 4800 m.a.s.l. The central region of the province harbors the highest species diversity. MAP and PET profoundly explained the richness pattern. Moreover, the significant role of DIST in the richness patterns of threatened plants was elucidated. These findings could help determine the richness pattern of threatened plant species in other mountainous regions of the world, with consideration of the impact of climate change.
Project description:Warming generally leads to increased evaporative demand, altering the amount of water needed for growing crops. For the Midwest, some studies have suggested that reaching yield targets by 2050 will not be possible without additional precipitation or large expansion of irrigation. Here, we show that this claim is not supported by the historical summer climate trends, which indicate that the warming of daily average temperatures is largely driven by increases in minimum temperatures, while maximum temperatures have decreased. This has translated into a net decrease in vapor pressure deficit (VPD) and potential evapotranspiration (PET). With the increasing rainfall, this suggests that crop water deficits have likely become less frequent in the region despite the warming climate. By projecting these trends into 2050 and ancillary use of a crop model, we estimate minor changes in PET that would have minimal effects on corn yields (<6%) under persistence of these trends.
Project description:A warmer climate increases evaporative demand. However, response to warming depends on water availability. Existing earth system models represent soil moisture but simplify groundwater connections, a primary control on soil moisture. Here we apply an integrated surface-groundwater hydrologic model to evaluate the sensitivity of shallow groundwater to warming across the majority of the US. We show that as warming shifts the balance between water supply and demand, shallow groundwater storage can buffer plant water stress; but only where shallow groundwater connections are present, and not indefinitely. As warming persists, storage can be depleted and connections lost. Similarly, in the arid western US warming does not result in significant groundwater changes because this area is already largely water limited. The direct response of shallow groundwater storage to warming demonstrates the strong and early effect that low to moderate warming may have on groundwater storage and evapotranspiration.