Project description:The issue of bacterial infections in COVID-19 patients has received increasing attention among scientists. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence and practices on the use of antibiotics in COVID-19 in- and outpatients. Published articles providing data on antibiotics use in COVID-19 patients were identified through computerized literature searches on the MEDLINE and SCOPUS databases. Searching the MEDLINE database, the following search terms were adopted: ((antibiotic) AND (COVID-19)). Searching the SCOPUS database, the following search terms were used: ((antibiotic treatment) AND (COVID-19)). The risk of bias in the included studies was not assessed. Both quantitative and qualitative information were summarized by means of textual descriptions. Five-hundred-ninety-three studies were identified, published from January 2020 to 30 October 2022. Thirty-six studies were included in this systematic review. Of the 36 included studies, 32 studies were on the use of antibiotics in COVID-19 inpatients and 4 on antibiotic use in COVID-19 outpatients. Apart from the studies identified and included in the review, the main recommendations on antibiotic treatment from 5 guidelines for the clinical management of COVID-19 were also summarized in a separate paragraph. Antibiotics should not be prescribed during COVID-19 unless there is a strong clinical suspicion of bacterial coinfection or superinfection.
Project description:Coronavirus disease 2019 (COVID-19) can be asymptomatic or lead to a wide spectrum of symptoms, ranging from mild upper respiratory system involvement to acute respiratory distress syndrome, multi-organ damage and death. In this study, we explored the potential of microRNAs (miRNA) in delineating patient condition and in predicting clinical outcome. Analysis of the circulating miRNA profile of COVID-19 patients, sampled at different hospitalization intervals after admission, allowed to identify miR-144-3p as a dynamically regulated miRNA in response to COVID-19.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:The lack of available biomarkers for diagnosing and predicting different stages of coronavirus disease 2019 (COVID-19) is currently one of the main challenges that clinicians are facing. Recent evidence indicates that the plasma levels of specific miRNAs may be significantly modified in COVID-19 patients. Large-scale deep sequencing analysis of small RNA expression was performed on plasma samples from 40 patients hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (between March and May 2020) (median 13.50 [IQR 9–24] days since symptoms initiation) and 21 healthy noninfected individuals. Patients were categorized as hospitalized not requiring oxygen therapy (n = 6), hospitalized requiring low-flow oxygen (n = 23), and hospitalized requiring high-flow oxygen support (n = 11). A total of 1218 different micro(mi)RNAs were identified. When compared with healthy noninfected donors, SARS-CoV-2 infected patients showed significantly (fold change [FC] >1.2 and adjusted p [padj] <0.05) altered expression of 190 miRNAs. The top 10 differentially expressed (DE) miRNAs were miR-122-5p, let-7b-5p, miR-146a-5p, miR-342-3p, miR-146b-5p, miR-629-5p, miR-24-3p, miR-12136, let-7a-5p, and miR-191-5p, which displayed FC and padj values ranging from 153 to 5 and 2.51 × 10-32 to 2.21 × 10-21, respectively, which unequivocally diagnosed SARS-CoV-2 infection. No differences in blood cell counts and biochemical plasma parameters, including interleukin 6, ferritin and D-dimer, were observed between COVID-19 patients on high-flow oxygen therapy, low-flow oxygen therapy, or not requiring oxygen therapy. Notably, 31 significantly deregulated miRNAs were found when patients on high- and low-flow oxygen therapy were compared. Similarly, 6 DE miRNAs were identified between patients on high flow and those not requiring oxygen therapy. SARS-CoV-2 infection generates a specific miRNA signature in hospitalized patients. Furthermore, specific miRNA profiles are associated with COVID-19 prognosis in severe patients.
Project description:BackgroundThere is an urgent need for novel therapeutic strategies for reversing COVID-19-related lung inflammation. Recent evidence has demonstrated that the cholesterol-lowering agents, statins, are associated with reduced mortality in patients with various respiratory infections. We sought to investigate the relationship between statin use and COVID-19 disease severity in hospitalized patients.MethodsA retrospective analysis of COVID-19 patients admitted to the Johns Hopkins Medical Institutions between March 1, 2020 and June 30, 2020 was performed. The outcomes of interest were mortality and severe COVID-19 infection, as defined by prolonged hospital stay (≥ 7 days) and/ or invasive mechanical ventilation. Logistic regression, Cox proportional hazards regression and propensity score matching were used to obtain both univariable and multivariable associations between covariates and outcomes in addition to the average treatment effect of statin use.ResultsOf the 4,447 patients who met our inclusion criteria, 594 (13.4%) patients were exposed to statins on admission, of which 340 (57.2%) were male. The mean age was higher in statin users compared to non-users [64.9 ± 13.4 vs. 45.5 ± 16.6 years, p <0.001]. The average treatment effect of statin use on COVID-19-related mortality was RR = 1.00 (95% CI: 0.99-1.01, p = 0.928), while its effect on severe COVID-19 infection was RR = 1.18 (95% CI: 1.11-1.27, p <0.001).ConclusionStatin use was not associated with altered mortality, but with an 18% increased risk of severe COVID-19 infection.