Project description:Ferlaviruses are important pathogens in snakes and other reptiles. They cause respiratory and neurological disease in infected animals and can cause severe disease outbreaks. Isolates from this genus can be divided into four genogroups-A, B, and C, as well as a more distantly related sister group, "tortoise". Sequences from large portions (5.3 kb) of the genomes of a variety of ferlavirus isolates from genogroups A, B, and C, including the genes coding the surface glycoproteins F and HN as well as the L protein were determined and compared. In silico analyses of the glycoproteins of genogroup A, B, and C isolates were carried out. Three isolates representing these three genogroups were used in transmission studies with corn snakes (Pantherophis guttatus), and clinical signs, gross and histopathology, electronmicroscopic changes in the lungs, and isolation of bacteria from the lungs were evaluated. Analysis of the sequences supported the previous categorization of ferlaviruses into four genogroups, and criteria for definition of ferlavirus genogroups and species were established based on sequence identities (80% resp. 90%). Analysis of the ferlavirus glycoprotein models showed parallels to corresponding regions of other paramyxoviruses. The transmission studies showed clear differences in the pathogenicities of the three virus isolates used. The genogroup B isolate was the most and the group A virus the least pathogenic. Reasons for these differences were not clear based on the differences in the putative structures of their respective glycoproteins, although e.g. residue and consequential structure variation of an extended cleavage site or changes in electrostatic charges at enzyme binding sites could play a role. The presence of bacteria in the lungs of the infected animals also clearly corresponded to increased pathogenicity. This study contributes to knowledge about the structure and phylogeny of ferlaviruses and lucidly demonstrates differences in pathogenicity between strains of different genogroups.
Project description:Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer-specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand-tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.
Project description:The number of reference genomes of snakes lags behind several other vertebrate groups (e.g. birds and mammals). However, in the last two years, a concerted effort by researchers from around the world has produced new genomes of snakes representing members from several new families. Here, we present a high-quality, annotated genome of the central ratsnake (Pantherophis alleghaniensis), a member of the most diverse snake lineage, Colubroidea. Pantherophis alleghaniensis is found in the central part of the Nearctic, east of the Mississippi River. This genome was sequenced using 10X Chromium synthetic long reads and polished using Illumina short reads. The final genome assembly had an N50 of 21.82 Mb and an L50 of 22 scaffolds with a maximum scaffold length of 82.078 Mb. The genome is composed of 49.24% repeat elements dominated by long interspersed elements. We annotated this genome using transcriptome assemblies from 14 tissue types and recovered 28,368 predicted proteins. Finally, we estimated admixture proportions between two species of ratsnakes and discovered that this specimen is an admixed individual containing genomes from the western (Pantherophis obsoletus) and central ratsnakes (P. alleghaniensis). We discuss the importance of considering interspecific admixture in downstream approaches for inferring demography and phylogeny.
Project description:Fermentation has attracted increasing attention in pig industry, because of low costs and numerous benefits on pig growth and health as well as environmental improvement, although the mechanisms remain largely unknown. In the present study, fermented corn-soybean meal significantly improved average daily gain and gain:food ratio (P < 0.05). Fermented feed (FF) significantly increased insulin-like growth factor 1 (IGF1) transcription in liver (P < 0.05). Meanwhile, fermented meal significantly enhanced the binding of CCAAT/enhancer-binding protein beta (C/EBPβ) to IGF1 promoter and C/EBPβ expression in liver (both P < 0.05). FF tended to increase IGF1 proteins in liver and serum too (both 0.05 < P < 0.10). Meanwhile, FF slightly but significantly increased hepatic and circulating triglyceride and total cholesterol levels, as well as serum ratio of high-density to low-density cholesterol (all P < 0.05). Our data indicated that FF could significantly augment the binding of C/EBPβ to IGF1 promoter and promote hepatic IGF1 expression and production, thus boost pig growth.