Project description:Aberrant cytokine signaling initiated from mutant receptor tyrosine kinases (RTKs) provides critical growth and survival signals in high risk acute myeloid leukemia (AML). Inhibitors to FLT3 have already been tested in clinical trials, however, drug resistance limits clinical efficacy. Mutant receptor tyrosine kinases are mislocalized in the endoplasmic reticulum (ER) of AML and play an important role in the non-canonical activation of signal transducer and activator of transcription 5 (STAT5). Here, we have tested a potent new drug called imipramine blue (IB), which is a chimeric molecule with a dual mechanism of action. At 200-300 nM concentrations, IB is a potent inhibitor of STAT5 through liberation of endogenous phosphatase activity following NADPH oxidase (NOX) inhibition. However, at 75-150 nM concentrations, IB was highly effective at killing mutant FLT3-driven AML cells through a similar mechanism as thapsigargin (TG), involving increased cytosolic calcium. IB also potently inhibited survival of primary human FLT3/ITD+ AML cells compared to FLT3/ITDneg cells and spared normal umbilical cord blood cells. Therefore, IB functions through a mechanism involving vulnerability to dysregulated calcium metabolism and the combination of fusing a lipophilic amine to a NOX inhibiting dye shows promise for further pre-clinical development for targeting high risk AML.
Project description:The use of high-dose ascorbate (ASC) for the treatment of human cancer has been attempted several decades ago and has been recently revived by several in vitro and in vivo studies in solid tumors. We tested the cytotoxic effects of ASC, alone or in combination with arsenic trioxide (ATO) in acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL). Leukemic cell lines and primary blasts from AML and APL patients were treated with graded concentrations of ASC, alone or in association with standard concentration (1 μM) of ATO. The ASC/ATO combination killed myeloid blasts, including leukemic CD34+ cells, while sparing CD34+ progenitors obtained from normal cord blood and bone marrow. Actually, approximately one-third (11/36) of primary AML cases were highly sensitive to the ASC/ATO combination. The mechanism of cell killing appeared to be related to increased oxidative stress and overproduction of ROS in a non-quantitative fashion, which resulted in induction of apoptosis. These effects were reverted by the addition of the antioxidant N-Acetyl-Cysteine (NAC). In the APL NB4 model, ASC induced direct degradation of the PML and PML/RARA proteins via caspase activation, while the transcriptional repressor DAXX was recruited in re-constituted PML nuclear bodies. Our findings encourage the design of pilot studies to explore the potential clinical benefit of ASC alone or in combination with ATO in advanced AML and APL.
Project description:Most elderly patients affected with acute myeloid leukemia (AML) will relapse and die of their disease even after achieving complete remission, thus emphasizing the urgent need for new therapeutic approaches with minimum toxicity to normal hematopoietic cells. Cranberry (Vaccinium spp.) extracts have exhibited anticancer and chemopreventive properties that have been mostly attributed to A-type proanthocyanidin (A-PAC) compounds. A-PACs, isolated from a commercially available cranberry extract, were evaluated for their effects on leukemia cell lines, primary AML samples, and normal CD34+ cord blood specimens. Our results indicated potent and specific antileukemia activity in vitro. In addition, the antileukemia activity of A-PACs extended to malignant progenitor and stem cell populations, sparing their normal counterparts. The antileukemia effects of A-PACs were also observed in vivo using patient derived xenografts. Surprisingly, we found that the mechanism of cell death was driven by activation of NF-κB. Overall, our data suggest that A-PACs could be used to improve treatments for AML by targeting leukemia stem cells through a potentially novel pathway.
Project description:In this study we interrogated the metabolome of human acute myeloid leukemia (AML) stem cells to elucidate properties relevant to therapeutic intervention. We demonstrate that amino acid uptake, steady-state levels, and catabolism are all elevated in the leukemia stem cell (LSC) population. Furthermore, LSCs isolated from de novo AML patients are uniquely reliant on amino acid metabolism for oxidative phosphorylation and survival. Pharmacological inhibition of amino acid metabolism reduces oxidative phosphorylation and induces cell death. In contrast, LSCs obtained from relapsed AML patients are not reliant on amino acid metabolism due to their ability to compensate through increased fatty acid metabolism. These findings indicate that clinically relevant eradication of LSCs can be achieved with drugs that target LSC metabolic vulnerabilities.
Project description:Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.
Project description:Despite substantial gains in our understanding of the genomics of acute myelogenous leukemia (AML), patient survival remains unsatisfactory especially among the older age group. T cell-based therapy of lymphoblastic leukemia is rapidly advancing; however, its application in AML is still lagging behind. Bispecific antibodies can redirect polyclonal effector cells to engage chosen targets on leukemia blasts. When the effector cells are natural-killer cells, both antibody-dependent and antibody-independent mechanisms could be exploited. When the effectors are T cells, direct tumor cytotoxicity can be engaged followed by a potential vaccination effect. In this review, we summarize the AML-associated tumor targets and the bispecific antibodies that have been studied. The potentials and limitations of each of these systems will be discussed.
Project description:Dendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRβ, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRβ-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML.
Project description:The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates in pathogenesis is unclear. Here, we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4 (high) from CXCR4(neg/low) AML patients. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOD/Shi-scid/IL-2R?(null) (NOG) leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to chemokine CXC motif ligand 12 (CXCL12). Functional analysis showed a greater mobilization of leukemic cells and LICs in response to drugs, suggesting that they target the interaction between leukemic cells and their supportive bone marrow microenvironment. In addition, increased apoptosis of leukemic cells in vitro and in vivo was observed. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs.