Project description:Dirt and microorganisms are the major problems in textiles which can generate unpleasant odor during their growth. Here, zinc oxide (ZnO) nanoparticles prepared by sol-gel method were loaded on the cotton fabrics using spin coating technique to enhance their antimicrobial properties and water repellency. The effects of ZnO precursor concentration, precursor solution pH, number of coating runs, and Mg doping percent on the structures, morphologies, and water contact angles (WCA) of the ZnO-coated fabrics were addressed. At 0.5 M concentration and pH7, more homogeneous and smaller ZnO nanoparticles were grown along the preferred (0 0 2) direction and uniformly distributed on the fabric with a crystallite size 17.98 nm and dislocation density 3.09 × 10-3 dislocation/nm2. The substitution of Zn 2+ with Mg 2+ ions slightly shifted the (002) peak position to a higher angle. Also, the zeta potential and particle size distribution were measured for ZnO nanoparticle suspension. A superhydrophobic WCA = 154° was measured for the fabric that coated at 0.5 M precursor solution, pH 7, 20 runs and 0% Mg doping. Moreover, the antibacterial activities of the ZnO-coated fabric were investigated against some gram-positive and gram-negative bacteria such as Salmonella typhimurium, Klebsiella pneumonia, Escherichia coli, and Bacillus subtilis.
Project description:Highly transparent and UV-resistant superhydrophobic arrays of SiO2-coated ZnO nanorods are prepared in a sequence of low-temperature (<150 °C) steps on both glass and thin sheets of PET (2 × 2 in.(2)), and the superhydrophobic nanocomposite is shown to have minimal impact on solar cell device performance under AM1.5G illumination. Flexible plastics can serve as front cell and backing materials in the manufacture of flexible displays and solar cells.
Project description:Mechanically robust, durable, fluorine-free superhydrophobic and UV shielding surfaces are fabricated on polyester umbrella canopy fabrics by self-assembly of stearic acid on zinc oxide (ZnO) nanoarchitectures on polyester fabrics. Drawbacks of conventional umbrella canopies including rain water penetration through the canopy during heavy rains, wet canopies taking too long to dry, and limited blockage of harmful UV radiation have been overcome with the surface modified canopy fabrics in the present study. Herein, in the typical synthesis, the polyester fabric is dipped in Zn(NO3)2 : hexamethylenetetraamine (HMT), at 1 : 1 molar ratio solution and heated at 100 °C for 2 h to grow ZnO nanoarchitectures on the fabric surface. Stearic acid is allowed to self-assemble by dipping the fabric in 1 g dm-3 stearic acid solution. The modified fabrics are characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray fluorescence spectroscopic techniques. The modified fabrics show superhydrophobicity characterized by water contact angles over 150° with the optimum analyzed conditions. The superhydrophobic layer formed on the fabric is resistant to acid rain and stayed durable throughout 50 abrasion cycles and under 1.5 h strong surfactant washing. The developed method is useful to fabricate a smart umbrella canopy with acid rain resistant, durable, robust superhydrophobic and UV blocking properties.
Project description:ZnO nanorods (NRs) are known for ultra-sensitive biomolecule detection through fluorescence enhancement. In this work, we demonstrate that ZnO NR arrays grown on Ag layers can significantly improve the enhancement up to 86 times compared to that grown on bare Si, and the enhancement can be modified in a controlled manner by varying Ag thickness. The much improved waveguide properties are attributed to the high reflectance of the Ag layers and their tuning effect on the diameters of ZnO NRs. Our results provide a deep insight into the mechanism of NRs-based fluorescence enhancement platform.
Project description:Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed.Graphical abstractThe figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications.Supplementary informationThe online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Project description:BackgroundSuperhydrophobic substrate modifications are an effective way to improve SERS sensitivity by concentrating analyte molecules into a small surface area. However, it is difficult to manipulate low-volume liquid droplets on superhydrophobic substrates.ResultsTo overcome this limitation, we deposited a hydrophilic Ti3C2Tx film on a superhydrophobic ZnO nanorod array to create a SERS substrate with improved analyte affinity. Combined with its interfacial charge transfer properties, this enabled a rhodamine 6G detection limit of 10-11 M to be achieved. In addition, the new SERS substrate showed potential for detection of biological macromolecules, such as microRNA.ConclusionCombined with its facile preparation, the SERS activity of ZnO/Ti3C2Tx suggests it may provide an ultrasensitive environmental pollutant-monitoring and effective substrate for biological analyte detection.
Project description:Functional fabrics with antibacterial performance are more welcome nowadays. However, the fabrication of functional fabrics with durable, steady performance via a cost-effective way remains a challenge. Polypropylene (denoted as PP) nonwoven fabric was modified by polyvinyl alcohol (denoted as PVA), followed by the in-situ deposition of silver nanoparticles (denoted as Ag NPs) to afford PVA-modified and Ag NPs-loaded PP (denoted as Ag/PVA/PP) fabric. The encapsulation of PP fiber by PVA coating contributes to greatly enhancing the adhesion of the loaded Ag NPs to the PP fiber, and the Ag/PVA/PP nonwoven fabrics exhibit significantly improved mechanical properties as well as excellent antibacterial activity against Escherichia coli (coded as E. coli). Typically, the Ag/PVA/PP nonwoven fabric obtained at a silver ammonia concentration of 30 mM has the best mechanical properties and the antibacterial rate reaches 99.99% against E. coli. The fabric retains excellent antibacterial activity even after washing for 40 cycles, showing prospects in reuse. Moreover, the Ag/PVA/PP nonwoven fabric could find promising application in industry, thanks to its desired air-permeability and moisture-permeability. In addition, we developed a roll-to-roll production process and conducted preliminary exploration to verify the feasibility of this method.
Project description:The Covid-19 pandemic increased enormously the manufacturing and usage of face masks and other personal protective equipment (PPE), resulting in accumulation of plastic waste and, thus, causing universal environmental concerns. In addressing the issue of waste reduction and finding alternatives for fossil-based products, investigation of different biobased and biodegradable polymers plays a crucial role. This study examines the processability characteristics of three commonly used biobased polymers available in the market: biobased poly(lactic acid) (PLA), partly biobased and biodegradable poly(butylene succinate) (PBS), and biobased high-density poly(ethylene) (BioHDPE). The investigation combines substantial polymer analysis with subsequent processability trials in two different spunmelt processes, namely, meltblow (MB) and the Nanoval technology, aiming to reveal the differences and difficulties in the processing behavior and pointing out advantages and/or disadvantages of the respective polymer/technology combination. In general, the observed processability behavior and outcomes indicate that within the used processes PLA exhibits superior processability compared to PBS and BioHDPE. Both the meltblow and Nanoval processing of PLA demonstrated a consistent production of fibers and efficient uptake without any compromise on the throughput. In contrast, the processing of PBS using Nanoval required the utilization of significantly elevated temperatures, as indicated by a rheological study. Furthermore, the rheological evaluation revealed that the viscosity of BioHDPE was excessively elevated, rendering it unsuitable for effective processing by the Nanoval method. The microfibers in the PLA-based meltblown fabric had a higher surface area, explaining why the PLA fibers were able to function as a barrier and, thus, contribute to the mitigation of air permeability adjustable between 500 and 1000 l·s-1·m-2 and thus competitive or even superior to PP nonwovens of the same fiber diameter and base weight (1480 l·s-1·m-2). Overall, these results showed that PLA can be an alternative raw material for fossil-based nonwovens of PPE applying, especially, the meltblown technique.
Project description:The impact of geometric features, light absorption spectra, and electrochemical active surface area on photoelectrochemical properties was investigated in this work. Nanoforests of ZnO nanorods with rationally controlled morphologies were grown on ITO substrates by the hydrothermal method and utilized as a model for this purpose. The size of the nanorods was systematically adjusted by varying the concentration of polyethyleneimine as a cation surfactant in the growth solution. It was found that the emergent geometric characteristics (i.e. the aspect ratio) increased almost at the same pace as the electrochemically active surface area, but the light scattering effect slightly increased as a result of the random spatial orientation of the nanorods. The large surface area and the void space between nanorods increased the photon-to-current conversion efficiency by promoting the hole transfer process at the electrode/electrolyte interface. A maximum photocurrent density of 0.06 mA cm-2 (0.5 V vs. NHE) for smaller diameter and length ZnO nanorods (ZnO-P1) was obtained under 365 nm UV light illumination. Additionally, we provide visual evidence that a shorter photogenerated hole diffusion distance results in improved charge separation efficiency using Mn2+ as the photogenerated hole imaging agent. Therefore, the present work demonstrates a facile strategy for nanoforest morphology improvement for generating strong contact at the ZnO NR electrode/electrolyte interface, which is favourable in energy conversion and storage technologies.
Project description:The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10-12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10-12, 6.04 × 10-12, and 5.03 × 10-12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.