Project description:Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.
Project description:In order to investigate epigenetic landscape and potential alterations in bladder, we established the chromatin profiling of 5637 cell line by ChIPseq for the following marks and transcription factor : H3K4me3, H3K9ac, H3K27me3, H3K9me3, H3K27ac, H3K4me1, CTCF and FOXA1.
Project description:Bladder carcinoma is a common malignancy with complicated treatment methods due to its heterogeneity. In this study, we focused on two bladder carcinoma cell lines, 5637 and T24, to compare their differences from the transcriptome level. RNA sequencing was used to generate the transcriptome data of the two cell line and the control cell line SV-HUC-1. Differentially expressed genes (DEGs) and differentially expressed microRNAs (miRNAs) of cell line 5637 and T24 were screened. Their annotation and analyses were conducted using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) to predict their possible functions and pathways involved. Number of DEGs specific in cell line 5637, specific in cell line T24 and in both the cell lines was 880, 1512 and 1412, respectively. Number of differentially expressed miRNAs of the three categories was 7, 20 and 18, respectively. These DEGs and miRNAs participated in different biological processes and pathways, among which some were further verified by qRT-PCR. Interferon-stimulated genes (ISGs), including STAT1, TMEM173 and OAS3, were down-regulated in cell line 5637 compared to SV-HUC-1. NDOR1 and NDUFV1, genes related to mitochondrial metabolism, were up-regulated in cell line T24. miR-4257, miR-6733 and gene WNT9A and WNT10A were down-regulated in both the cell lines. Thus cell line 5637 might have lower chemotherapy resistance while T24 might exhibit abnormal mitochondrial metabolism. These results uncovered major differences between cell line 5637 and T24, which indicated the two cell lines, should be selectively used in bladder carcinoma research.
Project description:BackgroundThis research work included bioinformatics modeling of the dipotassium-trioxohydroxytetrafluorotriborate-halogenated boroxine molecule, as well as simulation and prediction of structural interactions between the halogenated boroxine molecule, human carbonic anhydrase, and human catalase structures. Using computational methods, we tried to confirm the inhibitory effect of halogenated boroxine on the active sites of these previously mentioned enzymes. The three-dimensional crystal structures of human catalase (PDB ID: 1DGB) and human carbonic anhydrase (PDB ID: 6FE2) were retrieved from RCSB Protein Data Bank and the protein preparation was performed using AutoDock Tools. ACD/ChemSketch and ChemDoodle were used for creating the three-dimensional structure of halogenated boroxine. Molecular docking was performed using AutoDock Vina, while the results were visualized using PyMOL.ResultsResults obtained in this research are showing evidence that there are interactions between the halogenated boroxine molecule and both previously mentioned proteins (human carbonic anhydrase and human catalase) in their active sites, which led us to the conclusion that the inhibitory function of halogenated boroxine has been confirmed.ConclusionThese findings could be an important step in determining the exact mechanisms of inhibitory activity and will hopefully serve in further research purposes of complex pharmacogenomics studies.
Project description:A hallmark of the development of solid and hematological malignancies is the dysregulation of apoptosis, which leads to an imbalance between cell proliferation, cell survival and death. Halogenated boroxine [K2 (B3 O3 F4 OH)] (HB) is a derivative of cyclic anhydride of boronic acid, with reproducible anti-tumor and anti-proliferative effects in different cell models. Notably, these changes are observed to be more profound in tumor cells than in normal cells. Here, we investigated the underlying mechanisms through an extensive evaluation of (a) deregulated target genes and (b) their interactions and links with main apoptotic pathway genes upon treatment with an optimized concentration of HB. To provide deeper insights into the mechanism of action of HB, we performed identification, visualization, and pathway association of differentially expressed genes (DEGs) involved in regulation of apoptosis among tumor and non-tumor cells upon HB treatment. We report that HB at a concentration of 0.2 mg·mL-1 drives tumor cells to apoptosis, whereas non-tumor cells are not affected. Comparison of DEG profiles, gene interactions and pathway associations suggests that the HB effect and tumor-'selectivity' can be explained by Bax/Bak-independent mitochondrial depolarization by ROS generation and TRAIL-like activation, followed by permanent inhibition of NFκB signaling pathway specifically in tumor cells.
Project description:BackgroundThis study aimed to determine whether the enhancer of the rudimentary homolog (ERH) gene regulates cell migration and invasion in human bladder urothelial carcinoma (BUC) T24 cells and the underlying mechanism.MethodsFirst, we knocked down ERH in BUC T24 and 5637 cells by shRNA and then used wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays to determine the migration and invasion ability after ERH was knocked down. Moreover, we used gene expression profiling chip analysis and further functional experiments to explore the possible mechanism through which ERH knockdown downregulated metastasis ability in T24 cells.ResultsWound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays all showed that the metastasis ability was significantly inhibited in human BUC T24 and 5637 cells with ERH knockdown. A gene expression profiling chip analysis in T24 cells showed that the MYC gene may be an important downstream target of the ERH gene, and the functional experiments showed that MYC is a functional target of ERH in BUC T24 cells.ConclusionERH knockdown could inhibit the metastasis of BUC T24 cells in vitro and in vivo. This study further explored the mechanism of the ERH gene in the metastasis of the T24 human bladder cancer cell line and found that ERH may regulate MYC gene expression. The results of this research provide a basis for the clinical application of ERH as a potential target for BUC treatment.
Project description:ObjectiveThe aim of the present study was to explore the effect of cytoplasmic transduction peptide (CTP)-phosphatase and tensin homolog (PTEN) on the proliferation, cell cycle, apoptosis, migration and invasion of bladder cancer cells and the underlying molecular mechanism.MethodsA eukaryotic expression vector, pTT5-CTP-PTEN, was constructed. The constructed vector was transfected into HEK 293-6E cells to express a fusion protein, CTP-PTEN. The fusion protein was purified. 5637 bladder cancer cells were cocultured with purified CTP-PTEN fusion protein. Target gene expression, protein expression, cell proliferation, cell cycle, apoptosis, cell invasion and cell migration were examined by reverse transcription polymerase chain reaction (RT-PCR), western blot, MTT assay, flow cytometry, Transwell assay, and cell scratch assay, respectively.ResultsBoth PTEN and CTP-PTEN fusion protein inhibited the proliferation, cell cycle, invasion and migration of bladder cancer cells and promoted the apoptosis of bladder cancer cells. The effect of CTP-PTEN was more significant.ConclusionsThe fused expression of CTP and PTEN significantly increased the penetrability of the tumor suppressor gene PTEN into cancer cells. The CTP-PTEN fusion protein exhibited a significant carcinostatic effect on 5637 bladder cancer cells.
Project description:Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro. Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro. TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma.