Project description:In this work, the combination of high surface area diatomite with Fe and Cu bimetallic MOF material catalysts (Fe0.25Cu0.75(BDC)@DE) were synthesized by traditional solvothermal method, and exhibited efficient degradation performance to tetracycline hydrochloride (TC). The degradation results showed: Within 120 min, about 93% of TC was degraded under the optimal conditions. From the physical-chemical characterization, it can be seen that Fe and Cu play crucial roles in the reduction of Fe3+ because of their synergistic effect. The synergistic effect can not only increase the generation of hydroxyl radicals (•OH), but also improve the degradation efficiency of TC. The Lewis acid property of Cu achieved the pH range of reaction system has been expanded, and it made the material degrade well under both neutral and acidic conditions. Loading into diatomite can reduce agglomeration and metal ion leaching, thus the novel catalysts exhibited low metal ion leaching. This catalyst has good structural stability, and less loss of performance after five reaction cycles, and the degradation efficiency of the material still reached 81.8%. High performance liquid chromatography-mass spectrometry was used to analyze the degradation intermediates of TC, it provided a deep insight of the mechanism and degradation pathway of TC by bimetallic MOFs. This allows us to gain a deeper understanding of the catalytic mechanism and degradation pathway of TC degradation by bimetallic MOFS catalysts. This work has not only achieved important progress in developing high-performance catalysts for TC degradation, but has also provided useful information for the development of MOF-based catalysts for rapid environmental remediation.
Project description:Clean water is one of the sustainable development goals. Organic dye is one of the water pollutants affecting water quality. Hence, the conversion of dyes to safer species is crucial for water treatment. The Fenton reaction using Fe as a catalyst is a promising process. However, homogeneous catalysts are normally sensitive, difficult to separate, and burdensome to reuse. Therefore, a catechol-based hypercrosslinked polymer (catechol-HCP) was developed as an inexpensive solid support for Fe (catechol-HCP-Fe) and applied as a heterogenous Fenton catalyst. The good interaction of the catechol moiety with Fe, as well as the porous structure, simple preparation, low cost, and high stability of catechol-HCP, make it beneficial for Fe-loading in the polymer and Fenton reaction utilisation. The catechol-HCP-Fe demonstrated good catalytic activity for methylene blue (MB) degradation in a neutral pH. Complete decolouration of 100 ppm MB could be observed within 25 min. The rate of reaction was influenced by H2O2 concentration, polymer dose, MB concentration, pH, and temperature. The catechol-HCP-Fe could be reused for at least four cycles. The dominant reactive species of the reaction was considered to be singlet oxygen (1O2), and the plausible mechanism of the reaction was proposed.
Project description:In this work, polytetrafluoroethylene coating was firstly conducted to make stable and effective magnetic-activated carbon as a heterogeneous electro-Fenton catalyst for diuron oxidation. The catalysts were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). In addition, the effects of operating parameters such as catalyst dosage, current intensity, substrate concentration and pH on the degradation of diuron were investigated. The removal efficiency of diuron was more than 95% within 120 min oxidation under the conditions of I = 100 mA, pH = 6.7 ± 0.2, catalyst loading 3 g L-1 and diuron concentration 10 mg L-1. Moreover, the catalyst durability test demonstrated that the modification of 5% PTFE on the catalyst indeed has a significant beneficial effect on the useful life of the catalyst. We compared the performance of catalysts with or without PTFE modification in consecutive experiments; the modified catalysts exhibited remarkable advantages in that the diuron removal efficiency was stable with relatively low iron leaching (<0.1 mg L-1) during ten consecutive degradation experiments, which proved the durability and reusability of the modified catalyst. This work demonstrates that such a heterogeneous EF using stable magnetic activated carbon catalyst with PTFE modification is promising for organic wastewater treatment in initial neutral pH conditions; at the same time, these good properties of the modified catalyst increase the possibility of practical application.
Project description:We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.
Project description:Magnetic attapulgite-Fe3O4 nanocomposites (ATP-Fe3O4) were prepared by coprecipitation of Fe3O4 on ATP. The composites were characterized by scanning electron microscopey, X-ray diffractometry, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, energy dispersive spectrometer and transmission electron microscopy. Surface characterization showed that Fe3O4 particles with an average size of approximately 15 nm were successfully embedded in matrix of ATP. The capacity of the Fe3O4-activated ATP (A-ATP@Fe3O4) composites for catalytic degradation of ethidium bromide (EtBr, 80 mg/L) at different pH values, hydrogen peroxide (H2O2) concentrations, temperatures, and catalyst dosages was investigated. EtBr degradation kinetics studies indicated that the pseudo-first-order kinetic constant was 2.445 min-1 at T = 323 K and pH 2.0 with 30 mM H2O2, and 1.5 g/L of A-ATP@Fe3O4. Moreover, a regeneration study suggested that A-ATP@Fe3O4 maintained over 80% of its maximal EtBr degradation ability after five successive cycles. The effects of the iron concentrations and free radical scavengers on EtBr degradation were studied to reveal possible catalytic mechanisms of the A-ATP@Fe3O4 nanocomposites. Electron Paramagnetic Resonance revealed both hydroxyl (∙OH) and superoxide anion (∙O2-) radicals were involved in EtBr degradation. Radical scavenging experiment suggested EtBr degradation was mainly ascribed to ∙OH radicals, which was generated by reaction between Fe2+ and H2O2 on the surface of A-ATP@Fe3O4.
Project description:A fully nanoporous Fe-rich alloy, prepared by selective dissolution of melt-spun Fe43.5Cu56.5 ribbons, exhibits outstanding properties as a heterogeneous Fenton catalyst toward the degradation of methyl orange (MO) in aqueous solution. In addition, the ferromagnetic characteristics of this material enable its wireless manipulation toward specific locations within polluted wastewater. The influence of selective dissolution on the microstructure, sample morphology (surface and cross-section), elemental composition, and magnetic properties of the resulting nanoporous alloy is investigated. The dealloying procedure enhances the saturation magnetization and drastically increases the catalytic performance (i.e., the time required for full degradation of MO from the medium is reduced by a factor of approximately 2 by subjecting the Fe43.5Cu56.5 ribbons to prior dealloying). Remarkably, the effectiveness of this nanoporous material surpasses the results obtained by the homogeneous Fenton reaction using an equivalent concentration of Fe cations leached into the media from the nanoporous alloy. The different factors that promote the high catalytic activity are discussed. The outstanding catalytic activity, together with the simplicity of the synthetic procedure, makes this material very appealing for water remediation using advanced Fenton processes.
Project description:Heterogeneous Fenton-like catalysts with the activation of peroxymonosulfate (PMS), which offer the advantages of fast reaction rate, wide functional pH range and cost efficiency, have attracted great interest in wastewater treatment. In this study, a novel magnetic MnO2/Fe3O4/diatomite nanocomposite is synthesized and then used as heterogeneous Fenton-like catalyst to degrade the organic pollutant methylene blue (MB) with the activation of PMS. The characterization results show that the Fe3O4 nanoparticles and nanoflower-like MnO2 are evenly distributed layer-by-layer on the surface of diatomite, which can be readily magnetically separated from the solution. The as-prepared catalyst, compared with other Fenton-like catalysts, shows a superb MB degradation rate of nearly 100% in 45 min in the pH range of 4 to 8 and temperature range of 25 to 55 °C. Moreover, the nanocomposite shows a good mineralization rate of about 60% in 60 min and great recyclability with a recycle efficiency of 86.78% after five runs for MB. The probable mechanism of this catalytic system is also proposed as a synergistic effect between MnO2 and Fe3O4.
Project description:Fe-based metal organic frameworks (Fe-MOFs) were successfully synthesized with the dielectric barrier discharge (DBD) plasma method and FeSO4·7H2O as the Fe precursor. Fe-MOFs were used as Fenton-like catalysts in DBD plasma/Fenton-like technology to treat wastewater, which addressed the issues with iron solubility. Since the valence state of iron will affect the catalytic performance, the Fe precursor FeSO4·7H2O was added to regulate the valence state and adjust the catalytic performance by improving the availability of active sites. The influences of discharge voltage, catalyst addition amount, H2O2 addition amount and pH on the degradation efficiency of methyl orange (MO) were systematically examined. Through free radical capture experiments, the reaction mechanism of the plasma/Fenton-like catalytic degradation process was deduced primarily as the coordinated oxidation process of hydroxyl radicals (·OH), photo-generated holes (h+) and superoxide radicals (·O2 -). The reusability experiments proved that the catalyst was stable and reusable. The possible degradation pathways were proposed based on the identification of intermediate products generated in the degradation process by liquid chromatography-mass spectrometry (LC-MS) analyses.
Project description:In this study, the Fe-containing tailings (Fe-TO) ore was reutilized and enriched with FeCl3 as a heterogeneous catalyst for the Fenton process to degrade the organic dyes from aqueous solution. The determinants of the heterogeneous catalytic Fenton system which included iron modification ratio, solution pH, catalyst dosage, H2O2 dosage and initial concentration of organic dyes were systematically investigated. The modification ratio of 15% (w/w of iron), pH of 3, MFe-TO15 dosage of 0.5 g L-1 and H2O2 dosage of 840 mg L-1 were chosen as the best operational conditions for Fenton oxidation of organic dyes. The decolorization efficiency of both MB and RhB by MFe-TO15/H2O2 was higher than that of Fe-TO/H2O2 by about two times. The kinetic study showed the degradation of organic dyes well fitted the pseudo-first-order kinetic model with apparent constant rate values (K d) following the same sequence as the degradation efficiency of organic dyes. The degradation mechanism of dyes could be attributed to adsorption due to the good-development in textural properties of the iron modified catalyst (MFe-TO) with an increase in BET surface area, pore volume and pore diameter of, respectively, 2, 5 and 5 times and leaching iron through homogeneous Fenton reaction. However, the oxidation process occurring on the MFe-TO15's surface by heterogeneous Fenton reaction which enhanced decomposition of H2O2 for continuous generation of hydroxyl radicals was the main mechanism. The key role of *OH radical in oxidation of organic dyes was further ascertained by the remarkable drop in the decolorization of both organic dyes when the various radical-scavengers, including tert-butanol and chloride were supplemented into Fenton systems. A good stability of the catalyst was obtained through leaching test with low leaching iron ratio. The applied modified catalyst remained stable through three consecutive runs. From these findings, it can be concluded that the modified material can be applied as a feasible, inexpensive and highly effective catalyst for removal of persistent organic compounds from wastewater.
Project description:Chlorinated organic compounds (COCs) are among the more toxic organic compounds frequently found in soil and groundwater. Among these, toxic and low-degradable chlorobenzenes are commonly found in the environment. In this work, an innovative process using hydrogen peroxide as the oxidant, ferrioxalate as the catalyst and a visible light-emitting diode lamp (Vis LED) were applied to successfully oxidize 124-trichlorobenzene (124-TCB) in a saturated aqueous solution of 124-TCB (28 mg L-1) at a neutral pH. The influence of a hydrogen peroxide (HP) concentration (61.5-612 mg L-1), Fe3+ (Fe) dosage (3-10 mg L-1), and irradiation level (Rad) (I = 0.12 W cm-2 and I = 0.18 W cm-2) on 124-TCB conversion and dechlorination was studied. A D-Optimal experimental design combined with response surface methodology (RSM) was implemented to maximize the quality of the information obtained. The ANOVA test was used to assess the significance of the model and its coefficients. The maximum pollutant conversion at 180 min (98.50%) was obtained with Fe = 7 mg L-1, HP = 305 mg L-1, and I = 0.12 W cm-2. The effect of two inorganic anions usually presents in real groundwater (bicarbonate and chloride, 600 mg L-1 each) was investigated under those optimized operating conditions. A slight reduction in the 124-TCB conversion after 180 min of reaction was noticed in the presence of bicarbonate (8.31%) and chloride (7.85%). Toxicity was studied with Microtox® (Azur Environmental, Carlsbad, CA, USA) bioassay, and a remarkable toxicity decrease was found in the treated samples, with the inhibition proportional to the remaining 124-TCB concentration. That means that nontoxic byproducts are produced in agreement with the high dechlorination degrees noticed.