Project description:Background and aimsThe phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management.MethodsSamples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM).Key resultsA low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests.ConclusionsClimatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of conservation policies and management strategies for this endangered species.
Project description:The distribution of plant species around the Mediterranean basin is a product of the influence of both geographical barriers and of climatic changes experienced during the Tertiary, with the transition from a warm to cool periods. Several species, once largely distributed across the Northern Hemisphere, retracted to refugial areas in southern Europe where they are described as Tertiary relicts. Platanus orientalis is a typical representative of Tertiary flora in southwest Eurasia; its distribution spreads from the Caucasus to the Mediterranean, with its western border in Southern Italy and Sicily. We analysed genetic diversity and differentiation in the centre and western part of its distribution range using nuclear microsatellites and compared genetic parameters between core and western populations. We found an overall decrease in genetic diversity estimates (heterozygosity, private allelic richness) from central towards western populations, with those from Southern Italy and Sicily showing the lowest values. The low level of genetic diversity probably results from historic range fragmentation experienced by P. orientalis in its westernmost distribution as confirmed by high level genetic isolation of these populations. Ornamental hybrids were genetically distinguished from P. orientalis as contained private alleles, indicating that gene flow with natural populations is rare. Population assignment and neighbour-joining (NJ) analysis of populations identified four groups belonging to two main phyletic groups (the Southern Italian-Sicilian-Balkan and Cretan-Bulgarian-Turkish lineages) that seem to have different biogeographic origin and also excluded an artificial origin for southern Italian and Sicilian populations as previously suggested. These results show that quantifying the genetic variation of a Tertiary relict in a geographical context, and the potential effect of hybridization with introduced ornamental hybrids, can provide useful insights on factors influencing population genetic structure. Such information is crucial to predict how such taxa will respond to increasing anthropogenic influence on the environment.
Project description:Background and aimsA previous study detected no allozyme diversity in Iberian populations of the buckler-fern Dryopteris aemula. The use of a more sensitive marker, such as microsatellites, was thus needed to reveal the genetic diversity, breeding system and spatial genetic structure of this species in natural populations.MethodsEight microsatellite loci for D. aemula were developed and their cross-amplification with other ferns was tested. Five polymorphic loci were used to characterize the amount and distribution of genetic diversity of D. aemula in three populations from the Iberian Peninsula and one population from the Azores.Key resultsMost microsatellite markers developed were transferable to taxa close to D. aemula. Overall genetic variation was low (H(T) = 0.447), but was higher in the Azorean population than in the Iberian populations of this species. Among-population genetic differentiation was high (F(ST) = 0.520). All loci strongly departed from Hardy-Weinberg equilibrium. In the population where genetic structure was studied, no spatial autocorrelation was found in any distance class.ConclusionsThe higher genetic diversity observed in the Azorean population studied suggested a possible refugium in this region from which mainland Europe has been recolonized after the Pleistocene glaciations. High among-population genetic differentiation indicated restricted gene flow (i.e. lack of spore exchange) across the highly fragmented area occupied by D. aemula. The deviations from Hardy-Weinberg equilibrium reflected strong inbreeding in D. aemula, a trait rarely observed in homosporous ferns. The absence of spatial genetic structure indicated effective spore dispersal over short distances. Additionally, the cross-amplification of some D. aemula microsatellites makes them suitable for use in other Dryopteris taxa.
Project description:Identifying conservation units is crucial for the effective conservation of threatened species. Previous cases are almost exclusively based on large-scale but coarse sampling for genetic structure analyses. Significant genetic structure can occur within a small range, and thus multiple conservation units may exist in narrowly distributed plants. However, small-scale genetic structure is often overlooked in conservation planning especially for wind-pollinated and wind-dispersed trees, largely due to the absence of dense and elaborate sampling. In this study, we focused on a representative endangered relict plant, Metasequoia glyptostroboides. Using both nuclear microsatellites (nSSRs) and chloroplast DNA (cpDNA) fragments, we sampled across the narrow distribution range of this species and determined its conservation units by exploring its genetic structure and historical demography. cpDNA haplotypes were classified into two groups, but mixed in space, suggesting that the existent wild trees of M. glyptostroboides cannot be divided into different evolutionarily significant units. However, using nSSRs, we detected strong spatial genetic structure, with significant genetic differentiation and weak gene flow between the samples in the east of the species' distribution range and other samples. The divergence between the two nSSR groups was dated to the Last Glacial Maximum (c. 19.6 kya), suggesting that such spatial genetic structure has been maintained for a long term. Therefore, these two nSSR groups should be considered as different conservation units, that is, management units, to protect intergroup genetic variations, which is likely to be the outputs of local adaptation. Our findings highlight the necessity to reveal small-scale genetic structure and population demography to improve the conservation strategies of evolutionary potential of endangered plants.
Project description:Hybridization is common in many ferns and has been a significant factor in fern evolution and speciation. However, hybrids are rare between the approximately 30 species of Dicksonia tree ferns world-wide, and none are well documented. In this study we examine the relationship of a newly-discovered Dicksonia tree fern from Whirinaki, New Zealand, which does not fit the current taxonomy of the three species currently recognized in New Zealand. Our microsatellite genotyping and ddRAD-seq data indicate these plants are F1 hybrids that have formed multiple times between D. fibrosa and D. lanata subsp. lanata. The Whirinaki plants have intermediate morphology between D. fibrosa and D. lanata subsp. lanata and their malformed spores are consistent with a hybrid origin. The Whirinaki plants-Dicksonia fibrosa × D. lanata subsp. lanata-are an example of hybridization between distantly related fern lineages, with the two parent species estimated to have diverged 55-25 mya. Our chloroplast sequencing indicates asymmetric chloroplast inheritance in the Whirinaki morphology with D. lanata subsp. lanata always contributing the chloroplast genome.
Project description:Variation among flowering seasons in the time of flowering, synchrony and length of flowering, and fluctuations in the abundance of pollinators may cause a variation in pollen dispersal distance. In this study, we analyzed the temporal variation in pollen dispersal and breeding structure in the Neotropical tree species Tabebuia aurea (Bignoniaceae) and evaluated pollen dispersal between a population inside the reserve and a patch of isolated individuals on the edge of the reserve, and tested the hypothesis that isolated individuals are sinking for pollen. All adult trees (260) within a population of 40 ha and 9 isolated individuals on the edge of the reserve were sampled, and from these adults, 21 open-pollinated progeny arrays were analyzed in 2 flowering seasons (309 seeds in 2004 and 328 in 2005). Genetic analyses were based on the polymorphism at 10 microsatellite loci. A high proportion of self-pollination found in both flowering seasons indicated a mixed-mating system. The mean pollen dispersal distance differed significantly between the two flowering seasons (307.78 m in 2004 and 396.26 m in 2005). Maximum pollen dispersal was 2608 m, but most pollination events (65%) occurred at distances <300 m. Our results also showed that isolated individuals are sinking for pollen, with high pollen flow between the population inside the reserve and individuals on the edge. These results are most likely due to the large pollinator species, which can potentially fly long distances, and also due to temporal variation in individual fecundity and contribution to pollen dispersal.
Project description:To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Project description:In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a 'supermatrix' approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.
Project description:Ferns, with about 12,000 species, are the second most diverse lineage of vascular plants after angiosperms. They have been the subject of numerous molecular phylogenetic studies, resulting in the publication of trees for every major clade and DNA sequences from nearly half of all species. Global fern phylogenies have been published periodically, but as molecular systematics research continues at a rapid pace, these become quickly outdated. Here, we develop a mostly automated, reproducible, open pipeline to generate a continuously updated fern tree of life (FTOL) from DNA sequence data available in GenBank. Our tailored sampling strategy combines whole plastomes (few taxa, many loci) with commonly sequenced plastid regions (many taxa, few loci) to obtain a global, species-level fern phylogeny with high resolution along the backbone and maximal sampling across the tips. We use a curated reference taxonomy to resolve synonyms in general compliance with the community-driven Pteridophyte Phylogeny Group I classification. The current FTOL includes 5,582 species, an increase of ca. 40% relative to the most recently published global fern phylogeny. Using an updated and expanded list of 51 fern fossil constraints, we find estimated ages for most families and deeper clades to be considerably older than earlier studies. FTOL and its accompanying datasets, including the fossil list and taxonomic database, will be updated on a regular basis and are available via a web portal (https://fernphy.github.io) and R packages, enabling immediate access to the most up-to-date, comprehensively sampled fern phylogeny. FTOL will be useful for anyone studying this important group of plants over a wide range of taxonomic scales, from smaller clades to the entire tree. We anticipate FTOL will be particularly relevant for macroecological studies at regional to global scales and will inform future taxonomic systems with the most recent hypothesis of fern phylogeny.
Project description:Understanding metapopulation dynamics requires knowledge about local population dynamics and movement in both space and time. Most genetic metapopulation studies use one or two study species across the same landscape to infer population dynamics; however, using multiple co-occurring species allows for testing of hypotheses related to different life history strategies. We used genetic data to study dispersal, as measured by gene flow, in three ambystomatid salamanders (Ambystoma annulatum, A. maculatum, and A. opacum) and the Central Newt (Notophthalmus viridescens louisianensis) on the same landscape in Missouri, USA. While all four salamander species are forest dependent organisms that require fishless ponds to reproduce, they differ in breeding phenology and spatial distribution on the landscape. We use these differences in life history and distribution to address the following questions: (1) Are there species-level differences in the observed patterns of genetic diversity and genetic structure? and (2) Is dispersal influenced by landscape resistance? We detected two genetic clusters in A. annulatum and A. opacum on our landscape; both species breed in the fall and larvae overwinter in ponds. In contrast, no structure was evident in A. maculatum and N. v. louisianensis, species that breed during the spring. Tests for isolation by distance were significant for the three ambystomatids but not for N. v. louisianensis. Landscape resistance also contributed to genetic differentiation for all four species. Our results suggest species-level differences in dispersal ability and breeding phenology are driving observed patterns of genetic differentiation. From an evolutionary standpoint, the observed differences in dispersal distances and genetic structure between fall breeding and spring breeding species may be a result of the trade-off between larval period length and size at metamorphosis which in turn may influence the long-term viability of the metapopulation. Thus, it is important to consider life history differences among closely related and ecologically similar species when making management decisions.