Project description:BackgroundOsteosarcoma (OS) is one of the most common malignant bone tumors in children and adolescents. Circular RNAs (circRNAs) are critical regulators involved in multiple physiological and pathological processes. However, the underlying regulatory mechanisms of circRNA in OS are still not fully understood.MethodsThe circRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. Bioinformatics analysis was performed to predict the potential target miRNAs of hsa_circ_0069117 and its downstream mRNAs. The co-expression of hsa_circ_0069117/miR-875-3p/PF4V1 axis was further validated in OS tissue samples via quantitative real-time PCR (qRT-PCR). Luciferase reporter gene plasmids containing the sequence of PF4V1 and hsa_circ_0069117 were constructed to verify the putative sites of miR-875-3p. Gain/loss-of-function assays were performed to verify the effect of hsa_circ_0069117 on miR-875-3p/PF4V1 expression and related pathways via qRT-PCR and Western blot. Cell counting kit-8 (CCK-8) and wound-healing assays were performed to evaluate the effect of hsa_circ_0069117 on cell proliferation and migration of MG63 and U2OS, respectively.ResultsWe identified hsa_circ_0069117 as the most markedly dysregulated circRNA in OS cell lines. Bioinformatics analysis indicated that hsa_circ_0069117 might inhibit the expression of miR-875-3p, thereby promoting the expression of platelet factor 4 variant 1 (PF4V1). The expression of miR-875-3p was negatively correlated to hsa_circ_0069117 and PF4V1 in clinical samples. Luciferase reporter gene assays confirmed the binding sites of miR-875-3p on hsa_circ_0069117 and PF4V1. Gain/loss-of-function and rescue assays further indicated that hsa_circ_0069117 could significantly promote the expression of PF4V1 by sponging miR-875-3p, thereby inhibiting the proliferation and migration of OS cells by suppressing ERK1 and AKT.ConclusionOur study revealed that hsa_circ_0069117 is an anti-OS molecule that could substantially attenuate cell proliferation and migration of OS, which may provide a novel and reliable molecular target for the treatment of OS patients.
Project description:Cisplatin is used to treat a variety of malignancies, including testicular germ cell tumours (TGCTs). Although cisplatin-based chemotherapy yields high response rates, a subset of patients develop cisplatin resistance, limiting treatment options and worsening prognosis. Therefore, there is a high clinical need for new therapeutic strategies targeting cisplatin-resistant TGCTs. MicroRNA-371a-3p (miR-371), the new serum biomarker for TGCTs, shows significantly increased expression in cisplatin-resistant TGCT cell lines compared to sensitive parental cell lines. However, the functional impact of miR-371 on cisplatin sensitivity has not been investigated yet. To evaluate the impact of miR-371 on cisplatin sensitivity, antagomirs were used to inhibit miR-371 expression, resulting in a > 98% decrease in miR-371 expression. Cisplatin sensitivity was significantly increased after miR-371 inhibition in cisplatin-resistant and corresponding parental TGCT cell lines, indicating a strongly reduced viability and increased apoptosis after cisplatin treatment in miR-371-inhibited cells. Our results suggest that miR-371 may contribute to the development of cisplatin resistance in TGCTs. Interfering with miR-371 expression can increase the cisplatin sensitivity of tumour cells, which may represent a promising approach to improve future therapeutic outcomes in patients with TGCTs, especially those with cisplatin-resistant disease.
Project description:BackgroundCisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms.MethodsLactate levels were measured by lactate detection kit. Cisplatin-resistance NSCLC cells were established using progressive concentration of cisplatin. Cell viability, proliferation, and apoptosis were detected by CCK-8, EdU, and flow cytometry, respectively. Cell proliferation in vivo was determined by immunohistochemistry of Ki67 and apoptotic cells were calculated by the TUNEL. MeRIP-PCR was used to measure FOXO3 m6A levels. The interactions of genes were analyzed via RIP, ChIP, Dual-luciferase reporter, and RNA pull-down, respectively.ResultsElevated lactate levels were observed in both NSCLC patients and cisplatin-resistance cells. Lactate treatment increased cisplatin-resistance cell viability in vitro and promoted tumor growth in vivo. Mechanistically, lactate downregulated FOXO3 by YTHDF2-mediated m6A modification. FOXO3 transcriptionally reduced MAGI1-IT1 expression. FOXO3 overexpression inhibited the lactate-induced promotion of cisplatin resistance in NSCLC, which were reversed by MAGI1-IT1 overexpression. MAGI1-IT1 and IL6R competitively bound miR-664b-3p. FOXO3 overexpression or MAGI1-IT1 knockdown repressed lactate-mediated cisplatin resistance in vivo.ConclusionLactate promoted NSCLC cisplatin resistance through regulating FOXO3/MAGI1-IT1/miR-664b-3p/IL6R axis in YTHDF2-mediated m6A modification.
Project description:Cancer-derived exosomes participate in carcinogenesis and progression of cancers, including metastasis and drug-resistance. Of note, CTCF has been suggested to induce drug resistance in various cancers. Herein, we aim to investigate the role of cisplatin- (CDDP-) resistant osteosarcoma- (OS-) derived exosomal CTCF in OS cell resistance to CDDP and its mechanistic basis. Differentially expressed transcription factors, long noncoding RNAs (lncRNAs), miRNAs, and genes in OS were retrieved using bioinformatics approaches. Exosomes were extracted from CDDP-resistant OS cells and then cocultured with parental OS cells, followed by lentiviral transduction to manipulate the expression of CTCF, IGF2-AS, miR-579-3p, and MSH6. We assessed the in vitro and in vivo effects on malignant phenotypes, autophagy, CDDP sensitivity, and tumor formation of OS cells. It was established that CTCF and IGF2-AS were highly expressed in CDDP-resistant OS cells, and the CDDP-resistant OS cell-derived exosomal CTCF enhanced IGF2-AS transcription. CDDP-resistant OS-derived exosomes transmitted CTCF to OS cells and increased CDDP resistance in OS cells by activating an autophagy-dependent pathway. Mechanistically, CTCF activated IGF2-AS transcription and IGF2-AS competitively bound to miR-579-3p to upregulate MSH6 expression. Additionally, the promoting function of exosomal CTCF-mediated IGF2-AS/miR-579-3p/MSH6 in OS cell resistance to CDDP was confirmed in vivo. Taken together, CDDP-resistant OS-derived exosomal CTCF enhanced resistance of OS cells to CDDP via activating the autophagy-dependent pathway, providing a potential therapeutic consideration for OS treatment.
Project description:Epidermal growth factor-like domain 7 (EGFL7) is a protein specifically secreted by blood vessel endothelial cells, which plays an important role in angiogenesis. Considering the aberrant secretion of EGFL7 in osteosarcoma (OS) has not yet been elucidated, this study investigated the secretion of EGFL7 in OS and the changes in its secretion after chemotherapy. We observed increased varying secretion of EGFL7 in OS tissues compared with chondrosarcoma (CS) tissues. OS cell lines and HUVECs showed higher EGFL7 mRNA and protein expression than SW1353, with OS cells expressing the highest levels. In patient samples, EGFL7 was highly expressed in the cytoplasm of OS tumor cells and vascular endothelium cells. This overexpression was abolished in OS cell and tumor tissues when treated with chemotherapy. This study is a pioneering study to investigate EGFL7 expression and localization in human OS tissues and cell. Overexpression of EGFL-7 in response to chemotherapy suggests that it can be used as a therapeutic target for OS.
Project description:Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia with an increasing incidence. In the present study, Genome Expression Omnibus (GEO) datasets (GSE10667, GSE24206 and GSE32537) were applied to identify lncRNA DLEU2 in IPF. Through prediction using starBase, TargetScan, miRTarBase and miRDB, tripartite motif containing 2 (TRIM2) and prostaglandin F2 receptor inhibitor (PTGFRN) were found to be upregulated in IPF. DLEU2 expression, the mRNA expression of TRIM2 and PTGFRN, and miR‑369‑3p expression in A549 cells and lung tissues were detected by RT‑qPCR. The protein expression of TRIM2 and PTGFRN in lung tissues and A549 cells was detected by western blot analysis. The proliferation and migration of A549 cells was respectively detected by CCK‑8 assay and wound healing assay. The expression of collagen I, α‑smooth muscle actin (SMA) and E‑cadherin was detected by immunofluorescence assay in A549 cells, and collagen I expression was detected by immunohistochemistry assay in lung tissues. The expression of collagen I, α‑SMA and E‑cadherin was also detected by western blot analysis in A549 cells and lung tissues. Dual‑luciferase reporter assay was used to confirm the association between DLEU2 and miR‑369‑3p, and miR‑369‑3p and TRIM2. As a result, DLEU2 expression was found to be upregulated in IPF and in transforming growth factor (TGF)‑β1‑stimulated A549 cells. The silencing of DLEU2 inhibited the TGF‑β1‑induced proliferation, migration and epithelial‑mesenchymal transition (EMT) of A549 cells and bleomycin (BLM)‑induced pulmonary fibrosis in mice. TRIM2 expression was increased and miR‑369‑3p expression was decreased in the lung tissues of mice with BLM‑induced fibrosis and in TGF‑β1‑stimulated A549 cells. DLEU2 directly targeted miR‑369‑3p. The effect of the silencing of DLEU2 on TGF‑β1‑stimulated A549 cells was suppressed by the silencing of miR‑369‑3p. TRIM2 was the target protein of miR‑369‑3p. On the whole, the present study demonstrates that the silencing of DLEU2 suppressed IPF by upregulating miR‑369‑3p expression and downregulating TRIM2 expression.
Project description:BackgroundOsteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported.ObjectiveThe aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance.MethodsThe expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3'-UTR of RAF1 was confirmed by dual-luciferase reporter assay.ResultsOur results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and downregulated miR-605-3p increased the resistance of OS cells to therapeutic agents.ConclusionOur data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.
Project description:Alzheimer's disease (AD) is a form of dementia characterized by progressive memory decline and cognitive dysfunction. With only one FDA-approved therapy, effective treatment strategies for AD are urgently needed. In this study, we found that microRNA-485-3p (miR-485-3p) was overexpressed in the brain tissues, cerebrospinal fluid, and plasma of patients with AD, and its antisense oligonucleotide (ASO) reduced Aβ plaque accumulation, tau pathology development, neuroinflammation, and cognitive decline in a transgenic mouse model of AD. Mechanistically, miR-485-3p ASO enhanced Aβ clearance via CD36-mediated phagocytosis of Aβ in vitro and in vivo. Furthermore, miR-485-3p ASO administration reduced apoptosis, thereby effectively decreasing truncated tau levels. Moreover, miR-485-3p ASO treatment reduced secretion of proinflammatory cytokines, including IL-1β and TNF-α, and eventually relieved cognitive impairment. Collectively, our findings suggest that miR-485-3p is a useful biomarker of the inflammatory pathophysiology of AD and that miR-485-3p ASO represents a potential therapeutic candidate for managing AD pathology and cognitive decline.
Project description:Osteosarcoma (OS) is the most common primary pediatric malignancy of the bone having poor prognosis and long-term survival rates of less than 30% in patients with metastasis. MicroRNA-509 was reported to be downregulated in OS. We and others previously published that miR-509-3p can strongly attenuate cellular migration/invasion and sensitize ovarian cancer to cisplatin. Here, we show that overexpression of miR-509-3p inhibited migration of primary OS cell lines U2OS, HOS, and SaOS2 as well as metastatic derivatives 143B and LM7. miR-509-3p overexpression also inhibited proliferation and invasion of HOS and 143B cells and sensitized cells to cisplatin. Luciferase reporter assays using 3'-UTRs of predicted miR-509-3p targets associated with metastatic phenotypes revealed ARHGAP1 could be one of the downstream effectors of miR-509-3p in HOS. To find the global impact of miR-509-3p overexpression and cisplatin treatment we performed Reverse Phase Protein Analysis (RPPA). AXL, which has been reported to play a critical role in cisplatin resistance and confirmed as direct target of miR-509-3p was downregulated upon miR-509-3p treatment and further down-regulated upon miR-509-3p + cisplatin treatment. We propose that the miR-509-3p/AXL and miR-509-3p/ARHGAP1 axes have the potential to uncover new druggable targets for the treatment of drug resistant metastatic osteosarcoma.