Project description:Capacitive deionization (CDI) technology is currently considered a potential candidate for brackish water desalination. In this study, we designed iron oxide nanoparticle-incorporated activated carbon (AC/Fe2O3) via a facile and cost-effective hydrothermal process. The as-synthesized material was characterized using several techniques and tested as electrodes in CDI applications. We found that the distinctive properties of the AC/Fe2O3 electrode, i.e., high wettability, high surface area, unique structural morphology, and high conductivity, resulted in promising CDI performance. The electrosorptive capacity of the AC/Fe2O3 nanocomposite reached 6.76 mg g-1 in the CDI process, with a high specific capacitance of 1157.5 F g-1 at 10 mV s-1 in a 1 M NaCl electrolyte. This study confirms the potential use of AC/Fe2O3 nanocomposites as viable electrode materials in CDI and other electrochemical applications.
Project description:The explosive demand for a wide range of data processing has sparked interest towards a new logic gate platform as the existing electronic logic gates face limitations in accurate and fast computing. Accordingly, optoelectronic logic gates (OELGs) using photodiodes are of significant interest due to their broad bandwidth and fast data transmission, but complex configuration, power consumption, and low reliability issues are still inherent in these systems. Herein, we present a novel all-in-one OELG based on the bipolar spectral photoresponse characteristics of a self-powered perovskite photodetector (SPPD) having a back-to-back p+-i-n-p-p+ diode structure. Five representative logic gates ("AND", "OR", "NAND", "NOR", and "NOT") are demonstrated with only a single SPPD via the photocurrent polarity control. For practical applications, we propose a universal OELG platform of integrated 8 × 8 SPPD pixels, demonstrating the 100% accuracy in five logic gate operations irrelevant to current variation between pixels.
Project description:A hybrid film consisting of zinc oxide nanoparticles (ZnO NPs) and carbon nanotubes (CNTs) is formed on a glass substrate using a simple and swift spin coating process for the use in ultraviolet photodetectors (UV PDs). The incorporation of various types of CNTs into ZnO NPs (ZnO@CNT) enhances the performance of UV PDs with respect to sensitivity, photoresponse, and long-term operation stability when compared with pristine ZnO NP films. In particular, the introduction of single-walled CNTs (SWNTs) exhibits a superior performance when compared with the multiwalled CNTs (MWNTs) because SWNTs can not only facilitate the stability of free electrons generated by the O2 desorption on ZnO under UV irradiation owing to the built-in potential between ZnO and SWNT heterojunctions, but also allow facile and efficient transport pathways for electrons through SWNTs with high aspect ratio and low defect density. Furthermore, among the various SWNTs (arc-discharged (A-SWNT), Hipco (H-SWNT), and CoMoCat (C-SWNT) SWNTs), we demonstrate the ZnO@A-SWNT hybrid film exhibits the best performance because of higher conductivity and aspect ratio in A-SWNTs when compared with those of other types of SWNTs. At the optimized conditions for the ZnO@A-SWNT film (ratio of A-SWNTs and ZnO NPs and electrode distance), ZnO@A-SWNT displays a sensitivity of 4.9 × 103 % with an on/off current ratio of ~104 at the bias of 2 V under the UV wavelength of 365 nm (0.47 mW/cm2). In addition, the stability in long-term operation and photoresponse time are significantly improved by the introduction of A-SWNTs into the ZnO NP film when compared with the bare ZnO NPs film.
Project description:Transfer of the excellent intrinsic properties of individual carbon nanoparticles into real-life applications of the corresponding heat transfer fluids remains challenging. This process requires identification and quantification of the nanoparticle-liquid interface. Here, for the first time, we have determined geometry and properties of this interface by applying transmission electron cryomicroscopy (cryo-TEM). We have systematically investigated how the particle morphology of carbon-based nanomaterials affected the thermal conductivity, specific isobaric heat capacity, thermal diffusivity, density, and viscosity of ionanofluids and/or bucky gels, using a wide range of fillers, especially single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs), both with extreme values of aspect ratio (length to diameter ratio) from 150 to 11 000. Accordingly, hybrid systems composed of various carbon nanomaterials and ionic liquid, namely 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], were prepared and characterized. Most of the analyzed nanodispersions exhibited long-term stability even without any surfactant. Our study revealed that the thermal conductivity could be remarkably improved to the maximum values of 43.9% and 67.8% for ionanofluid and bucky gel (at 1 wt % loadings of MWCNTs and SWCNTs), respectively, compared to the pristine ionic liquid. As a result, the model proposed by Murshed and co-workers has been improved for realistic description of the concentration-dependent thermal conductivity of such hybrid systems. The obtained results undoubtedly indicate the potential of ionanofluids and bucky gels for energy management.
Project description:We use an ultra-fast near-infrared pulse coincidence technique to study the time, temperature, and power dependence of the photoresponse of a bi-metal contacted graphene photodetector. We observe two components of the photovoltage signal. One component is gate-voltage dependent, linear in power at room temperature and sub-linear at low temperature-consistent with the hot-electron photothermoelectric effect due to absorption in the graphene. The power dependence is consistent with supercollision-dominated cooling in graphene. The other component is gate-voltage independent and linear in temperature and power, which we interpret as due to thermoelectricity of the metal electrodes due to differential light absorption.
Project description:Although ZnO nanostructure-based photodetectors feature a well-established system, they still present difficulties when being used in practical situations due to their slow response time. In this study, we report on how forming an amorphous SnO2 (a-SnO2) shell layer on ZnO nanorods (NRs) enhances the photoresponse speed of a ZnO-based UV photodetector (UV PD). Our suggested UV PD, consisting of a ZnO/a-SnO2 NRs core-shell structure, shows a rise time that is 26 times faster than a UV PD with bare ZnO NRs under 365 nm UV irradiation. In addition, the light responsivity of the ZnO/SnO2 NRs PD simultaneously increases by 3.1 times, which can be attributed to the passivation effects of the coated a-SnO2 shell layer. With a wide bandgap (~4.5 eV), the a-SnO2 shell layer can successfully suppress the oxygen-mediated process on the ZnO NRs surface, improving the photoresponse properties. Therefore, with a fast photoresponse speed and a low fabrication temperature, our as-synthesized, a-SnO2-coated ZnO core-shell structure qualifies as a candidate for ZnO-based PDs.
Project description:Förster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively. The FRET from SNPs to GQDs with an EFRET of ∼78% is demonstrated from excitation-dependent photoluminescence spectra and decay curves. The photodetector (PD) responsivity (R) of the FRET system at 532 nm is enhanced by 10(0)∼10(1)/10(2)∼10(3) times under forward/reverse biases, respectively, compared to the PD containing solely GQDs. This remarkable enhancement is understood by network-like current paths formed by the GQDs on the SNPs and easy transfer of the carriers generated from the SNPs into the GQDs due to their close attachment. The R is 2∼3 times further enhanced at 325 nm by the FRET effect.
Project description:Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions. The findings reveal the successful synthesis of 12-18 nm bimetallic Cu-Ni nanoparticles with high phase homogeneity, alongside phase-segregated nanoparticles predicted by molecular dynamics simulations. Based on the comparison of the experimental and computational data, a possible scenario for phase segregation during the synthesis was proposed. It includes clustering of the atoms of the same type in an initial solution or the stage of gel formation and further developing segregation during the combustion/cooling stage. The research concludes that early synthesis stages, including particle preformation, significantly influence the phase homogeneity of multiprincipal element alloys. This study contributes to understanding nanomaterial formation, offering insights for improved alloy synthesis and enhanced functionalities in advanced applications.
Project description:In this work, the fabrication process flow of ZnO/NiO heterojunction device on a PET substrate, optical properties, physical properties and photoresponses presented (Patel and Kim, 2017) [1]. Absorption coefficient and Tauc plots of ZnO and NiO samples are summarized. Digital photograph of flexible NiO/ZnO/ITO device on a PET substrate is presented. Surface morphologies of ITO on PET, polycrystalline ZnO on ITO/PET, and nanocrystalline NiO on ZnO/ITO/PET is presented with a demonstration of scissor-cut design. NiO/ZnO/ITO/PET photoelectric device has advantages of large-scale production and light-weight. Transmittance, reflectance and absorbance dataset of the native PET substrate (100 μm thick) is summarized. Photoresponses of the transparent (NiO/ZnO/ITO/PET) device with bias modulations including the rising edge and falling edge are included in this article.
Project description:Functional nanocomposite-based printable inks impart strength, mechanical stability, and bioactivity to the printed matrix due to the presence of nanomaterials or nanostructures. Carbonaceous nanomaterials are known to improve the electrical conductivity, osteoconductivity, mechanical, and thermal properties of printed materials. In the current work, we have incorporated carbon nanofiber nanoparticles (CNF NPs) into methacrylated gelatin (GelMA) to investigate whether the resulting nanocomposite printable ink constructs (GelMA-CNF NPs) promote cell proliferation. Two kinds of printable constructs, cell-laden bioink and biomaterial ink, were prepared by incorporating various concentrations of CNF NPs (50, 100, and 150 µg/mL). The CNF NPs improved the mechanical strength and dielectric properties of the printed constructs. The in vitro cell line studies using normal human dermal fibroblasts (nHDF) demonstrated that CNF NPs are involved in cell-material interaction without affecting cellular morphology. Though the presence of NPs did not affect cellular viability on the initial days of treatment, it caused cytotoxicity to the cells on days 4 and 7 of the treatment. A significant level of cytotoxicity was observed in the highly CNF-concentrated bioink scaffolds (100 and 150 µg/mL). The unfavorable outcomes of the current work necessitate further study of employing functionalized CNF NPs to achieve enhanced cell proliferation in GelMA-CNF NPs-based bioprinted constructs and advance the application of skin tissue regeneration.