Unknown

Dataset Information

0

Prognosis and diagnosis of prostate cancer based on hypergraph regularization sparse least partial squares regression algorithm.


ABSTRACT:

Background

Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has increased significantly in recent years. This study aimed to further identify candidate biomarkers with prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa patients through association analysis.

Material and methods

To this end, this paper proposes a sparse partial least squares regression algorithm based on hypergraph regularization (HR-SPLS) by integrating and clustering two kinds of data. Next, module 2, with the most significant weight, was selected for further analysis according to the weight of each module related to DNA methylation and mRNAs. Based on the DNA methylation sites in module 2, this paper uses multiple machine learning methods to construct a PCa diagnosis-related model of 10-DNA methylation sites.

Results

The results of Receiver Operating Characteristic (ROC) analysis showed that the DNA methylation-related diagnostic model we constructed could diagnose PCa patients with high accuracy. Subsequently, based on the mRNAs in module 2, we constructed a prognostic model for 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, MARCKSL1, LMOD1, and MYLK) using multivariate Cox regression analysis. The prognostic model could predict the disease free survival of PCa patients with moderate to high accuracy (area under the curve (AUC) =0.761). In addition, Gene Set EnrichmentAnalysis (GSEA) and immune analysis indicated that the prognosis of patients in the risk group might be related to immune cell infiltration.

Conclusions

Our findings may provide new methods and insights for identifying disease-related biomarkers by integrating DNA methylation and gene expression data.

SUBMITTER: Huang RH 

PROVIDER: S-EPMC11210239 | biostudies-literature | 2024 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prognosis and diagnosis of prostate cancer based on hypergraph regularization sparse least partial squares regression algorithm.

Huang Ruo-Hui RH   Ge Zi-Lu ZL   Xu Gang G   Zeng Qing-Ming QM   Jiang Bo B   Xiao Guan-Cheng GC   Xia Wei W   Wu Yu-Ting YT   Liao Yun-Feng YF  

Aging 20240531 11


<h4>Background</h4>Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has increased significantly in recent years. This study aimed to further identify candidate biomarkers with prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa patients through association analysis.<h4>Material and methods</h4>To this end, this paper proposes a sparse partial least squares regression algorithm based on hypergraph reg  ...[more]

Similar Datasets

| S-EPMC2674843 | biostudies-literature
| S-EPMC3852556 | biostudies-literature
| S-EPMC2861314 | biostudies-literature
| S-EPMC5012894 | biostudies-literature
| S-EPMC4965874 | biostudies-literature
| S-EPMC2770199 | biostudies-literature
| S-EPMC6953292 | biostudies-literature
| S-EPMC7998002 | biostudies-literature
| S-EPMC6890557 | biostudies-literature
| S-EPMC9710113 | biostudies-literature