Project description:King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.
Project description:BackgroundThe characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.ResultsIn this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a 'blue' module highly associated with cellulose synthesis and a 'turquoise' module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.ConclusionsThis study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.
Project description:Low phosphorus availability is a major abiotic factor constraining wheat growth. The molecular mechanisms of the wheat whole genome under low-phosphorus stress are still unclear. To obtain information on gene expression in wheat seedlings under low-phosphorus stress, transcriptome sequencing was performed on roots and leaves. The results showed that 2,318 (1,646 upregulated and 672 downregulated) transcripts were differentially expressed in the leaves, and 2,018 (1,310 upregulated and 708 downregulated) were differentially expressed in the roots. Further analysis showed that these differentially expressed genes (DEGs) were mainly enriched in carbon fixation in photosynthetic organs and in carbon metabolism, photosynthesis, glyoxylate and dicarboxylate metabolism and plant-pathogen interaction in both leaves and roots. These pathways were mainly associated with environmental adaptation, energy metabolism and carbohydrate metabolism, suggesting that the metabolic processes were strengthened in wheat seedlings under low-phosphorus stress and that more energy and substances were produced to resist or adapt to this unfavourable environment. This research might provide potential directions and valuable resources to further study wheat under low-phosphorus stress.
Project description:Rice (Oryza sativa) is one of the most important crops grown worldwide, and saline-alkali stress seriously affects the yield and quality of rice. It is imperative to elucidate the molecular mechanisms underlying rice response to saline-alkali stress. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the effects of long-term saline-alkali stress on rice. High saline-alkali stress (pH > 9.5) induced significant changes in gene expression and metabolites, including 9347 differentially expressed genes (DEGs) and 693 differentially accumulated metabolites (DAMs). Among the DAMs, lipids and amino acids accumulation were greatly enhanced. The pathways of the ABC transporter, amino acid biosynthesis and metabolism, glyoxylate and dicarboxylate metabolism, glutathione metabolism, TCA cycle, and linoleic acid metabolism, etc., were significantly enriched with DEGs and DAMs. These results suggest that the metabolites and pathways play important roles in rice's response to high saline-alkali stress. Our study deepens the understanding of mechanisms response to saline-alkali stress and provides references for molecular design breeding of saline-alkali resistant rice.
Project description:Halophyte Tamarix ramosissima. Lcdcb (T. ramosissima) are known as the representative of Tamarix plants that are widely planted in salinized soil. However, molecular mechanisms towards salt tolerance and adaptation are largely rare. In this study, we carried out RNA-sequence and transcriptome analysis of T. ramosissima in response to NaCl stress, screened differentially expressed genes (DEGs) and further verified by qRT-PCR. Results showed that 105702 unigenes were spliced from the raw data of transcriptome sequencing, where 54238 unigenes were retrieved from KEGG, KOG, NR, and SwissProt. After 48 hours of NaCl treatment, the expression levels of 6374 genes were increased, and 5380 genes were decreased in leaves. After 168 hours, the expression levels of 3837 genes were up-regulated and 7808 genes were down-regulated. In particular, 8 transcription factors annotated to the KEGG Pathway were obtained, involving the WRKY and bZIP transcription family. In addition, KEGG pathway annotation showed that expression of 39 genes involved in ROS scavenging mechanisms were significantly changed, in which 21 genes were up-regulated and 18 genes were down-regulated after 48 hours as well as 15 genes were up-regulated and 24 genes were down-regulated after 168h. Simultaneously, the enzyme activities of SOD and POD were significantly enhanced under NaCl treatment, but the enzyme activity of CAT was not significantly enhanced. Moreover, WRKY, MYB and bZIP may participate in the process of salt resistance in T. ramosissima. This study provides gene resources and a theoretical basis for further molecular mechanisms of salt tolerance in T. ramosissima.
Project description:Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.
Project description:Phosphorus (P) is an essential macronutrient element for plant growth, and deficiency of inorganic phosphate (Pi) limits plant growth and yield. Elephant grass (Pennisetum purpureum) is an important fodder crop cultivated widely in tropical and subtropical areas throughout the world. However, the mechanisms underlying efficient P use in elephant grass under Pi deficiency remain poorly understood. In this study, the physiological and molecular responses of elephant grass leaves and roots to Pi deficiency were investigated. The results showed that dry weight, total P concentration, and P content decreased in Pi-deprived plants, but that acid phosphatase activity and P utilization efficiency (PUE) were higher than in Pi-sufficient plants. Regarding Pi starvation-responsive (PSR) genes, transcriptomics showed that 59 unigenes involved in Pi acquisition and transport (especially 18 purple acid phosphatase and 27 phosphate transporter 1 unigenes) and 51 phospholipase unigenes involved in phospholipids degradation or Pi-free lipids biosynthesis, as well as 47 core unigenes involved in the synthesis of phenylpropanoids and flavonoids, were significantly up-regulated by Pi deprivation in leaves or roots. Furthermore, 43 unigenes related to Pi-independent- or inorganic pyrophosphate (PPi)-dependent bypass reactions were markedly up-regulated in Pi-deficient leaves, especially five UDP-glucose pyrophosphorylase and 15 phosphoenolpyruvate carboxylase unigenes. Consistent with PSR unigene expression changes, metabolomics revealed that Pi deficiency significantly increased metabolites of Pi-free lipids, phenylpropanoids, and flavonoids in leaves and roots, but decreased phospholipid metabolites. This study reveals the mechanisms underlying the responses to Pi starvation in elephant grass leaves and roots, which provides candidate unigenes involved in efficient P use and theoretical references for the development of P-efficient elephant grass varieties.
Project description:Many severe epidemics are caused by enteroviruses (EVs) and coronaviruses (CoVs), including feline coronavirus (FCoV) in cats, epidemic diarrhea disease virus (PEDV) in pigs, infectious bronchitis virus (IBV) in chickens, and EV71 in human. Vaccines and antiviral drugs are used to prevent and treat the infection of EVs and CoVs, but the effectiveness is affected due to rapidly changing RNA viruses. Many plant extracts have been proven to have antiviral properties despite the continuous mutations of viruses. Napier grass (Pennisetum purpureum) has high phenolic content and has been used as healthy food materials, livestock feed, biofuels, and more. This study tested the antiviral properties of P. purpureum extract against FCoV, PEDV, IBV, and EV71 by in vitro cytotoxicity assay, TCID50 virus infection assay, and chicken embryo infection assay. The findings showed that P. purpureum extract has the potential of being disinfectant to limit the spread of CoVs and EVs because the extract can inhibit the infection of EV71, FCoV, and PEDV in cells, and significantly reduce the severity of symptoms caused by IBV in chicken embryos.
Project description:The uniform elephant grass seedlings were treated with 600 mM KH2PO4 (high-Pi treatment, HP) or 0 mM KH2PO4 (low-Pi treatment, LP) in Magnavaca’s solution. The samples were harvested after 15 days of treatments for the TMT proteomic analysis. There were three biological replicates in each treatment.