Unknown

Dataset Information

0

Softness-Aided Mild Hyperthermia Boosts Stiff Nanomedicine by Regulating Tumor Mechanics.


ABSTRACT: Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM. As a result, doxorubicin (DOX)-loaded stiff nanogels gain greater benefits in tumor penetration and antitumor efficacy than soft counterparts from softness-mediated mild-PTT. This study reveals the crucial role of nanomedicine mechanical properties in tumor distribution and provides a novel strategy for overcoming the barriers of solid tumors with soft deformable nanogels.

SUBMITTER: Li Z 

PROVIDER: S-EPMC11234402 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Softness-Aided Mild Hyperthermia Boosts Stiff Nanomedicine by Regulating Tumor Mechanics.

Li Zheng Z   Zhu Yabo Y   Zhang Zhijie Z   Wang Huimin H   Wang Chong C   Xu Chen C   Li Shiyou S   Zhang Shuya S   Yang Xiangliang X   Li Zifu Z  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20240505 26


Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending  ...[more]

Similar Datasets

| S-EPMC6299702 | biostudies-literature
| S-EPMC4025989 | biostudies-literature
| S-EPMC8636770 | biostudies-literature
| S-EPMC11848644 | biostudies-literature
| S-EPMC9457765 | biostudies-literature
| S-EPMC10015032 | biostudies-literature
2007-12-01 | GSE9218 | GEO
| S-EPMC9624340 | biostudies-literature
| S-EPMC10386177 | biostudies-literature
| S-EPMC8597267 | biostudies-literature