Ontology highlight
ABSTRACT: Importance
Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.
SUBMITTER: Flatgard BM
PROVIDER: S-EPMC11237648 | biostudies-literature | 2024 Jun
REPOSITORIES: biostudies-literature
Microbiology spectrum 20240503 6
Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum β-lactamase-producing <i>Escherichia coli</i> (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were ...[more]