Project description:The high growth rate of Ulva seaweeds makes it a potential algal biomass resource. In particular, Ulva meridionalis grows up to fourfold a day. Here, we demonstrated strong carbon fixation by U. meridionalis using 13C stable isotope labelling and traced the 13C flux through sugar metabolites with isotope-ratio mass spectrometry (IR-MS), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), 13C-nuclear magnetic resonance spectrometry (13C-NMR), and gas chromatography-mass spectrometry (GC-MS). U. meridionalis was first cultured in 13C-labelled enriched artificial seawater for 0-12 h, and the algae were collected every 4 h. U. meridionalis grew 1.8-fold (dry weight), and the 13C ratio reached 40% in 12 h, whereas 13C incorporation hardly occurred under darkness. At the beginning of the light period, 13C was incorporated into nucleic diphosphate (NDP) sugars in 4 h, and 13C labelled peaks were identified using FT-ICR-MS spectra. Using semiquantitative 13C-NMR measurements and GC-MS, 13C was detected in starch and matrix polysaccharides after the formation of NDP sugars. Moreover, the 14:10 light:dark regime resulted into 85% of 13C labelling was achieved after 72 h of cultivation. The rapid 13C uptake by U. meridionalis shows its strong carbon fixation capacity as a promising seaweed biomass feedstock.
Project description:Green macroalgae, mostly represented by the Ulvophyceae, the main multicellular branch of the Chlorophyceae, constitute important primary producers of marine and brackish coastal ecosystems. Ulva or sea lettuce species are some of the most abundant representatives, being ubiquitous in coastal benthic communities around the world. Nonetheless the genus also remains largely understudied. This review highlights Ulva as an exciting novel model organism for studies of algal growth, development and morphogenesis as well as mutualistic interactions. The key reasons that Ulva is potentially such a good model system are: (i) patterns of Ulva development can drive ecologically important events, such as the increasing number of green tides observed worldwide as a result of eutrophication of coastal waters, (ii) Ulva growth is symbiotic, with proper development requiring close association with bacterial epiphytes, (iii) Ulva is extremely developmentally plastic, which can shed light on the transition from simple to complex multicellularity and (iv) Ulva will provide additional information about the evolution of the green lineage.
Project description:Vitamin B12, only found naturally in animal-based foods, is essential for brain functions and various chemical reactions in the human body. Insufficient vitamin B12 leads to vitamin B12 deficiency, common among strict vegetarians due to their limited intake of animal-based foods. Nevertheless, extensive studies have demonstrated that macroalgae, specifically the Ulva lactuca species, are rich in vitamin B12 and could be further exploited in future dietary applications. In the current study, the ideal extraction method of vitamin B12 from dried U. lactuca was developed and optimised to achieve the maximum vitamin B12 yield. The effects of several extraction parameters, including the solvent-to-solvent, methanol:water (MeOH:H2O), and solute-to-solvent ratios, and pH on the total vitamin B12 content were analysed through a two-level factorial and central composite design. The highest vitamin B12 content, particularly cyanocobalamin (CN-Cbl), was recovered through the ultrasonic-assisted extraction (UAE) of oven-dried U. lactuca at 3 g:60 mL of solute-to-solvent and 25:75% of MeOH to H2O ratios at pH 4. The extraction of CN-Cbl from oven-dried U. lactuca that employed the UAE method has elevated CN-Cbl content recovery compared to other extraction methods.
Project description:The survival of wetland plant species largely relies on physiological adaptations essential for submergence and desiccation. Intertidal seaweeds, unlike terrestrial plants, have unique adaptations to submergence and can also sustain desiccation arising from tidal rhythms. This study determined the differential metabolic regulations in the inter-tidal seaweed species Ulva lactuca against the submergence and desiccation. During desiccation, the relative water content of the algal thalli declined with concomitant increase in reactive oxygen species (ROS) and lipid peroxidation. Nevertheless, the trends reversed during recovery on re-submergence and attained homeostasis. Metabolite profiling of U. lactuca revealed desiccation induced balance in energy reserve utilization by adjusting carbohydrate metabolism and switch over to ammonia metabolism. Upon re-submergence, thalli showed an increase in fermentative metabolites, pyruvate-alanine conversion, and the GABA shunt. Prolonged submergence induced substrate level phosphorylation mediated sugar biosynthesis while continuing the alternative carbon flux through fermentative metabolism, an increase in osmoprotectants glycine and betaine, sulfur bearing compounds cysteine and hypotaurine, and phenolic compound coniferaldehyde. The determined metabolic regulations in U. lactuca for submergence tolerance provide insights into potential evolutionarily conserved protective mechanisms across the green lineage and also highlights the possible role of sulfur oxoforms as strong free radical scavengers.
Project description:Ulva rigida green seaweed is an abundant biomass consisting of polysaccharides and protein mixtures and a potential bioresource for bioplastic food packaging. This research prepared and characterized novel biodegradable films from Ulva rigida extracts. The water-soluble fraction of Ulva rigida was extracted and prepared into bioplastic films. 1H nuclear magnetic resonance indicated the presence of rhamnose, glucuronic and sulfate polysaccharides, while major amino acid components determined via high-performance liquid chromatography (HPLC) were aspartic acid, glutamic acid, alanine and glycine. Seaweed extracts were formulated with glycerol and triethyl citrate (20% and 30%) and prepared into films. Ulva rigida films showed non-homogeneous microstructures, as determined via scanning electron microscopy, due to immiscible crystalline component mixtures. X-ray diffraction also indicated modified crystalline morphology due to different plasticizers, while infrared spectra suggested interaction between plasticizers and Ulva rigida polymers via hydrogen bonding. The addition of glycerol decreased the glass transition temperature of the films from -36 °C for control films to -62 °C for films with 30% glycerol, indicating better plasticization. Water vapor and oxygen permeability were retained at up to 20% plasticizer content, and further addition of plasticizers increased the water permeability up to 6.5 g·mm/m2·day·KPa, while oxygen permeability decreased below 20 mL·mm/m2·day·atm when blending plasticizers at 30%. Adding glycerol efficiently improved tensile stress and strain by up to 4- and 3-fold, respectively. Glycerol-plasticized Ulva rigida extract films were produced as novel bio-based materials that supported sustainable food packaging.
Project description:Apomixis is an asexual reproduction system without fertilization, which is an important proliferation strategy for plants and algae. Here, we report on the apomeiosis in the green seaweed Ulva prolifera, which has sexual and obligate asexual populations. Genomic PCR of mating type (MT)-locus genes revealed asexual thalli carrying both MT genomes. Observation of the chromosomes during the formation of each type of reproductive cell revealed that cells in asexual thalli performed apomeiosis without chromosome reduction. Moreover, genotyping revealed that laboratory-cultured sporophytic thalli produced not only each type of gametophyte but also diploid thalli carrying the mt- and mt+ genome (mt± thallus strains). The mt± thallus strain released diploid biflagellate zoids, with ultrastructure and behavior similar to mt+ gametes. Additionally, a transcriptomic analysis revealed that some meiosis-related genes (Mei2L and RAD1) were highly expressed in the quadriflagellate zoosporoids. Our results strongly suggest that asexual thalli originally evolved via apomeiosis in sporophytic thalli.
Project description:Ulva polysaccharides present several physiological activities including antiviral, antitumor and anti-plasmodial effects. However, current processing usually results in low yields and high prices, thus lacking commercialization potential. The aim of this study was to develop an efficient method for the extraction of Ulva polysaccharides with high biological activity. The effect of cell wall-degrading enzymes including cellulase, hemicellulase, pectinase and protease on Ulva polysaccharide extraction was studied by statistical mixing design. Using the most effective enzyme preparations as the basic components, the optimal proportions of the enzyme mixture were determined as follows: cellulase 35.3%, pectinase 34.5%, alkaline protease 30.2%, which increased the polysaccharide yield from 6.43% in the absence of enzymes to 26.68%. Subsequently, through response surface analysis, the optimal conditions were determined: enzyme concentration of 1.5%, enzymatic time of 1.1 h, ultrasonic time of 90 min and enzymatic temperature of 60 °C. Under the optimal extraction conditions, the extraction yield of Ulva polysaccharides could be increased to 30.14%. Moreover, extracted polysaccharides exhibit strong antioxidant properties in DPPH, ABTS, hydroxyl radical, superoxide radical and H2O2-induced cellular damage models. This study laid a solid foundation for the use and development of Ulva polysaccharides.
Project description:A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 μg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).
Project description:Sulfated polysaccharides (SPs) obtained from green seaweeds are structurally heterogeneous molecules with multifunctional bioactivities. In this work, two sulfated and pyruvated galactans were purified from Caulerpa cupressoides var. flabellata (named SP1 and SP2), and their immunostimulatory effect was evaluated using cultured murine macrophage cells. Both SPs equally increased the production of nitric oxide, reactive oxygen species, and the proinflammatory cytokines TNF-α and IL-6. NMR spectroscopy revealed that both galactans were composed primarily of 3)-β-d-Galp-(1→3) units. Pyruvate groups were also found, forming five-membered cyclic ketals as 4,6-O-(1'carboxy)-ethylidene-β-d-Galp residues. Some galactoses are sulfated at C-2. In addition, only SP2 showed some galactose units sulfated at C-4, indicating that sulfation at this position is not essential for the immunomodulatory activity of these galactans. Overall, the data showed that the galactans of C. cupressoides exhibited immunostimulating activity with potential therapeutic applications, which can be used in the development of new biomedical products.
Project description:Herpes simplex virus 1 (HSV-1) remains a prominent health concern widespread all over the world. The increasing genital infections by HSV-1 that might facilitate acquisition and transmission of HIV-1, the cumulative evidence that HSV-1 promotes neurodegenerative disorders, and the emergence of drug resistance signify the need for new antiviral agents. In this study, the in vitro anti-herpetic activity of sulfated polysaccharides (SPs) extracted by enzyme or hot water from seaweeds collected in France and Mexico from stranding events, were evaluated. The anti-herpetic activity evaluation of the semi-refined-polysaccharides (sr-SPs) and different ion exchange purified fractions showed a wide range of antiviral activity. Among them, the sr-SPs from the Rhodophyta Halymenia floresii showed stronger activity EC50 0.68 μg/mL with SI 1470, without cytotoxicity. Further, the antiviral activity of the sr-SPs evaluated at different treatment schemes showed a high EC50 of 0.38 μg/mL during the viral adsorption assays when the polysaccharide and the virus were added simultaneously, whilst the protection on Vero cell during the post-infection assay was effective up to 1 h. The chemical composition, FTIR and 1H NMR spectroscopic, and molecular weights of the sr-SPs from H. floresii were determined and discussed based on the anti-herpetic activity. The potential utilization of seaweed stranding as a source of antiviral compounds is addressed.