Project description:Bacteria capable of producing different extracellular enzymes of potential relevance in digestive processes were isolated from the stomach, hepatopancreas and intestine of Pacific white shrimp Litopenaeus vannamei. A total of 64 strains with proteolytic activity were isolated and grouped into 16 clusters based on morphological characteristics: 4 groups were isolated from the intestine; 5 from the hepatopancreas; and 7 from the stomach. Molecular methods (16S rRNA gene amplification and sequencing) and phenotypic criteria (Gram stain, catalase and oxidase tests, cell and colony morphology) were used to identify strains, which corresponded to Pseudoalteromonas and Vibrio genera. These genera are reported to form part of the digestive tract microbial community in shrimp. Both genera were isolated from all three tested tissues. One member of each morphologic group was selected for analysis of the presence of amylases, lipases/esterases and chitinases. Most of the strains had all the tested enzymes, indicating that the L. vannamei digestive tract microbiotic flora includes groups which have the potential to contribute to the degradation of dietary components.
Project description:Crystals of an unligated monomeric arginine kinase from the Pacific whiteleg shrimp Litopenaeus vannamei (LvAK) were successfully obtained using the microbatch method. Crystallization conditions and preliminary X-ray diffraction analysis to 1.25 Å resolution are reported. Data were collected at 100 K on NSLS beamline X6A. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 56.5, b = 70.2, c = 81.7 Å. One monomer per asymmetric unit was found, with a Matthews coefficient (V(M)) of 2.05 Å(3) Da(-1) and 40% solvent content. Initial phases were determined by molecular replacement using a homology model of LvAK as the search model. Refinement was performed with PHENIX, with final R(work) and R(free) values of 0.15 and 0.19, respectively. Biological analysis of the structure is currently in progress.
Project description:BACKGROUND: In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). RESULTS: In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. CONCLUSIONS: HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional.
Project description:BackgroundEugenol is the most commonly used plant anesthetic to relieve the stressors during various aquaculture procedures. This study aims to investigate the pharmacokinetics of eugenol in Pacific white shrimp by immersion baths in a simulated transportation.ResultsThe pharmacokinetics of eugenol were firstly investigated in Pacific white shrimp by immersion baths of 300 mg L- 1 eugenol over 5 min (Treatment 1), 10 mg L- 1 eugenol during 24 h (Treatment 2) and a sequential immersion administration (Treatment 3). Concentrations of eugenol in hemolymph, hepatopancreas, and muscle were determined using Gas chromatography-tandem mass spectrometry (GC-MS/MS). After immersion bath of Treatment 1, the elimination half-life (t1/2z) values are 1.3 h and 11 h for hepatopancreas and muscles, indicating the rapid absorption and elimination of eugenol in shrimp. Under the Treatment 2 administration, the eugenol peak concentration is 6527.9 μg/kg in muscle, followed by 402.8 μg/kg in hepatopancreas, with the lowest concentration of 37.9 μg/L in hemolymph. Area under the curve (AUC0-∞) values lie in the order of muscle > hepatopancreas > hemolymph, suggesting that eugenol tends to accumulate in muscle by the immersion administration. Moreover, the average residence time (MRT0-∞) values of 38.6, 23.0 and 115.3 h for hemolymph, hepatopancreas and muscle are achieved, which may indicate that hepatopancreas is the main organ for elimination of eugenol. After combining the conditions in a sequential bath immersion of eugenol (Treatment 3), the maximum concentration (Cmax) values of eugenol are higher than those achieved in Treatment 2, indicating that accumulation of eugenol happened in haemolymph, hepatopancreas and muscle. In addition, the corresponding t1/2z values are 4.7, 14.9 and 47.6 h, respectively, suggesting the faster elimination from the tissues following sequential administration. After the immersion bath, eugenol concentrations in muscle of Pacific white shrimp are lower than 2.5 mg/kg at 2 h, 48 h and 24.5 h in Treatment 1 ~ 3.ConclusionsA withdrawal period of 2 h, 48 h and 24.5 h following a 300 mg L- 1 of eugenol over a 5-min, 10 mg L- 1 eugenol concentration during a 24-h and combined conditions in a sequential immersion bath were suggested.
Project description:In this study, the tail muscle microbiota of pacific white shrimp (Litopenaeus vannamei) sourced from five countries across Central and South America and Southeast Asia were determined and compared. The genomic DNA was sequenced at around 10 × coverage for each geographical location and was assembled de novo for comparative analysis. The assembled sequences for all the lines were classified based on their similarity to the sequences in the public database. We found that there is high correlation among the microbiota of shrimp from disparate regions, as well as the presence of some DNA from bacteria known to cause food poisoning in humans. Sequencing data has been deposited at NCBI-SRA database and can be found under the BioProject ID PRJNA282154.
Project description:A simple bioassay that quantifies feed intake as an estimation of relative attractability of feeds containing different ingredients in the Pacific white shrimp Litopenaeus vannamei is described. Fish meal (FM), fish protein hydrolysate (FPH), squid meal (SqM) and casein (CN) were assessed at the same dietary level for their relative influence on feed intake rates of Litopenaeus vannamei. A bland diet containing 92% whole wheat grain meal, 6% diatomaceous earth and 2% alginate with a known low attractability was used as the standard control or base diet. Ingredients were added to the bland base control diet at a level of 3% as fed. Shrimp were stocked into 80 L glass tanks (n= 20 per tank) in a recirculating aquaculture system. Tanks were randomly assigned to one of five diet treatments (3tanks/treatment). Experiments measuring the attractability of each feed were conducted twice daily at 0900 hours and 1330 hours over a five day period. For each experiment, 40 feed pellets (ca. 1 g) corresponding to the assigned treatment were provided to each tank. To calculate the rate of feed intake, pellets remaining in each tank were counted at six minute intervals for a seventy-two minute period. Differences in rate of feed intake among diets were evaluated using Cox Regression Analysis. This attractability assay required only small amounts of ingredients and incorporated ingredients into a bland feed, which significantly reduces the influence from other ingredients or compound in the pellets. All of the test protein ingredients, especially SqM, in the feeds significantly increased the feed consumption rate. The diet containing SqM was consumed at a significantly higher rate than those containing casein and FM but not FPH. FPH and CN containing diets were not significantly different but consumed at a higher rate than the diet containing FM. Results of these trials indicate that the presence of certain ingredients can increase feed intake, thereby increasing nutrient availability of the diets. This reported method to determine consumption of diets containing certain ingredients can be considered as a valid method to estimate attractability.
Project description:Penaeid shrimp has a distinctive metamorphosis stage during early development. Although morphological and biochemical studies about this ontogeny have been developed for decades, researches on gene expression level are still scarce. In this study, we have investigated the transcriptomes of five continuous developmental stages in Pacific white shrimp (Litopenaeus vannamei) with high throughput Illumina sequencing technology. The reads were assembled and clustered into 66,815 unigenes, of which 32,398 have putative homologues in nr database, 14,981 have been classified into diverse functional categories by Gene Ontology (GO) annotation and 26,257 have been associated with 255 pathways by KEGG pathway mapping. Meanwhile, the differentially expressed genes (DEGs) between adjacent developmental stages were identified and gene expression patterns were clustered. By GO term enrichment analysis, KEGG pathway enrichment analysis and functional gene profiling, the physiological changes during shrimp metamorphosis could be better understood, especially histogenesis, diet transition, muscle development and exoskeleton reconstruction. In conclusion, this is the first study that characterized the integrated transcriptomic profiles during early development of penaeid shrimp, and these findings will serve as significant references for shrimp developmental biology and aquaculture research.
Project description:In order to gain a better understanding of the impact of Vibrio parahaemolyticus infection on genetic regulation of Litopenaeus vannamei,we performed a transcriptome analysis in the hepatopancreas of Litopenaeus vannamei challenged with Vibrio parahaemolyticus, using the Illumina HiSeq 2500 platform.
Project description:It is no doubt that the improvement of flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater contributes to its development potential in aquaculture. In this study, we aimed to explore the effect of arginine supplementation on the flesh quality of L. vannamei reared in freshwater and its mechanism. L. vannamei were randomly fed with three diets for 56 days, of which arginine level was 10.15 g kg-1 (arginine-deficient diet), 21.82 g kg-1 (arginine-optimal diet), and 32.46 g kg-1 (arginine-excessive diet), respectively. Each diet was randomly assigned to triplicate tanks, and each tank was stocked with 35 shrimps (initial weight: 1.70 ± 0.02 g). Results showed the arginine-optimal diet increased the weight gain, flesh percentage, crude protein and flavor amino acid contents in muscle, and improved the flesh hardness by conversing fast myofibers to slow myofibers, increasing myofiber density and myofibrillar length, and promoting ornithine and collagen synthesis. The arginine-optimal diet influenced the purine metabolic pathway by reducing hypoxanthine, xanthine, and inosine contents. Ornithine, citrulline, and glutamate were identified as the key metabolites affecting flesh quality traits after arginine treatments. Only increasing the levels of dietary arginine did not result in an increase in endogenous creatine synthesis in muscle and hepatopancreas. Overall, the arginine-optimal diet improved the flesh quality traits of L. vannamei reared in freshwater due to the enhanced muscular hardness, protein deposition, and flavor, which may be contributing to the transformation of muscle fiber type and increase in protein synthesis by the metabolites of arginine (ornithine, citrulline, and glutamate).