Project description:BackgroundRed foxes (Vulpes vulpes) have recently been recognized as potential reservoirs of several vector-borne pathogens and a source of infection for domestic dogs and humans, mostly due to their close vicinity to urban areas and frequent exposure to different arthropod vectors. The aim of this study was to investigate the presence and distribution of Babesia spp., Hepatozoon canis, Anaplasma spp., Bartonella spp., 'Candidatus Neoehrlichia mikurensis', Ehrlichia canis, Rickettsia spp. and blood filaroid nematodes in free-ranging red foxes from Bosnia and Herzegovina.MethodsSpleen samples from a total of 119 red foxes, shot during the hunting season between October 2013 and April 2014 throughout Bosnia and Herzegovina, were examined for the presence of blood vector-borne pathogens by conventional PCRs and sequencing.ResultsIn the present study, three species of apicomplexan parasites were molecularly identified in 73 red foxes from the entire sample area, with an overall prevalence of 60.8%. The DNA of B. canis, B. cf. microti and H. canis was found in 1 (0.8%), 38 (31.9%) and 46 (38.6%) spleen samples, respectively. In 11 samples (9.2%) co-infections with B. cf. microti and H. canis were detected and one fox harboured all three parasites (0.8%). There were no statistically significant differences between geographical region, sex or age of the host in the infection prevalence of B. cf. microti, although females (52.9%; 18/34) were significantly more infected with H. canis than males (32.9%; 28/85). The presence of vector-borne bacteria and filaroid nematodes was not detected in our study.ConclusionThis is the first report of B. canis, B. cf. microti and H. canis parasites in foxes from Bosnia and Herzegovina and the data presented here provide a first insight into the distribution of these pathogens among the red fox population. Moreover, the relatively high prevalence of B. cf. microti and H. canis reinforces the assumption that this wild canid species might be a possible reservoir and source of infection for domestic dogs.
Project description:BACKGROUND: Hepatozoon canis is a protozoan tick-borne pathogen of dogs and wild canids. Hepatozoon spp. have been reported to infect foxes in different continents and recent studies have mostly used the polymerase chain reaction (PCR) for the detection and characterization of the infecting species. Surveying red foxes (Vulpes vulpes) may contribute to better understanding the epidemiology of canine vector-borne diseases, including hepatozoonosis caused by H. canis in domestic dogs. The present study investigated the prevalence of Hepatozoon spp. by means of histopathology and molecular analysis of different tissues in red foxes from different parts of Portugal. METHODS: Blood and tissues including bone marrow, heart, hind leg muscle, jejunum, kidney, liver, lung, popliteal or axillary lymph nodes, spleen and/or tongue were collected from 91 red foxes from eight districts in northern, central and southern Portugal. Tissues were formalin-fixed, paraffin-embedded, cut and stained with hematoxylin and eosin. Polymerase chain reaction (PCR) amplified a ~650 bp fragment of the 18S rRNA gene of Hepatozoon spp. and the DNA products were sequenced. RESULTS: Hepatozoon canis was detected in 68 out of 90 foxes (75.6%) from all the sampled areas by PCR and sequencing. Histopathology revealed H. canis meronts similar in shape to those found in dogs in the bone marrow of 11 (23.4%) and in the spleen of two (4.3%) out of 47 foxes (p = 0.007). All the 11 foxes found positive by histopathology were also positive by PCR of bone marrow and/or blood. Positivity by PCR (83.0%) was significantly higher (p < 0.001) than by histopathological examination (23.4%) in paired bone marrow samples from the same 47 foxes. Sequences of the 18S rRNA gene of H. canis were 98-99% identical to those in GenBank. CONCLUSIONS: Hepatozoon canis was found to be highly prevalent in red fox populations from northern, central and southern Portugal. Detection of the parasite by histopathology was significantly less sensitive than by PCR. Red foxes are a presumptive reservoir of H. canis infection for domestic dogs.
Project description:Red foxes (Vulpes vulpes) are susceptible to viral diseases of domestic carnivores. In this study, by screening rectal swabs collected from 34 red foxes in Italy, we identified kobuvirus RNA in five samples. Based on analysis of partial RdRp and full-length VP1 genes, all of the strains shared the highest identity with canine kobuviruses (CaKVs) recently detected in the US, the UK and Italy. These findings provide the first evidence of the circulation of these novel viruses in foxes.
Project description:BackgroundEchinococcus multilocularis is a small tapeworm affecting wild and domestic carnivores and voles in a typical prey-predator life cycle. In Italy, there has been a focus of E. multilocularis since 1997 in the northern Italian Alps, later confirmed in red foxes collected from 2001 to 2005. In this study, we report the results of seven years of monitoring on E. multilocularis and other cestodes in foxes and describe the changes that occurred over time and among areas (eco-regions) showing different environmental and ecological features on a large scale.MethodsEggs of cestodes were isolated from feces of 2872 foxes with a sedimentation/filtration technique. The cestode species was determined through multiplex PCR, targeting and sequencing ND1 and 12S genes. Analyses were aimed to highlight variations among different eco-regions and trends in prevalence across the study years.ResultsOut of 2872 foxes, 217 (7.55%) samples resulted positive for cestode eggs at coproscopy, with differences of prevalence according to year, sampling area and age class. Eight species of cestodes were identified, with Taenia crassiceps (2.65%), Taenia polyacantha (1.98%) and E. multilocularis (1.04%) as the most represented. The other species, Mesocestoides litteratus, Taenia krabbei, T. serialis, T. taeniaeformis and Dipylidium caninum, accounted for < 1% altogether. Echinococcus multilocularis was identified in foxes from two out of six eco-regions, in 30 fecal samples, accounting for 1.04% within the cestode positives at coproscopy. All E. multilocularis isolates came from Bolzano province. Prevalence of cestodes, both collectively and for each of the three most represented species (T. crassiceps, T. polyacantha and E. multilocularis), varied based on the sampling year, and for E. multilocularis an apparent increasing trend across the last few years was evidenced.ConclusionsOur study confirms the presence of a focus of E. multilocularis in red foxes of northeast Italy. Although this focus seems still spatially limited, given its persistence and apparent increasing prevalence through the years, we recommend research to be conducted in the future on the ecological factors that, on a smaller scale, allow this zoonotic species to persist. On the same scale, we recommend a health education campaign to inform on the measures to prevent this zoonosis, targeted at people living in the area, especially hunters, dog owners, forestry workers and other potentially exposed categories.
Project description:BackgroundRed foxes (Vulpes vulpes) are one of the most widespread wild carnivores in the world, being recognized to harbor and transmit a wide range of vector-borne diseases. Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato are zoonotic tick-borne pathogens causing emerging diseases. Wild animals play an essential role in the transmission of diseases and pathogens maintenance in nature. Epidemiological studies regarding the prevalence of tick-borne pathogens in red foxes are of public health importance, as they may successfully act as a pathogen transmission interface between wildlife, domestic animals and humans.FindingsThis study included 14 counties from Romania. A total number of 353 red foxes (Vulpes vulpes) were examined. Heart tissue samples were collected during necropsy and stored at -20 °C. Genomic DNA extraction was performed and all samples were examined by polymerase chain reaction (PCR). Specific primers for A. phagocytophilum, A. platys, E. canis and Borrelia burgdorferi s.l. were used. Sequence analysis was performed (Macrogen Europe, Amsterdam) and obtained sequences are available at GenBank™. Out of the 353 samples, 9 (2.55 %; 95 % CI: 1.25-4.96 %) were positive for A. phagocytophilum. Positive animals originated from 5 counties. In total, 5 out of 353 heart tissue samples (1.42 %; 95 % CI: 0.52-3.47 %) collected from red foxes were positive for B. burgdorferi s.l. Red foxes originated from 4 counties. None of the samples were positive for A. platys or E. canis. No co-infection with A. phagocytophilum and B. burgdorferi s.l. was found.ConclusionThis first report of A. phagocytophilum and B. burgdorferi s.l. in red foxes from Romania suggests a limited role of foxes in the maintenance of the two related pathogens, but may represent a potential risk from a public health perspective.
Project description:BackgroundThe bacteria Anaplasma platys and Ehrlichia canis and the protozoan Leishmania infantum are vector-borne agents that cause canine vector-borne diseases, some of which are zoonotic. The present survey investigated the prevalence of Anaplasma, Ehrlichia and Leishmania in red foxes (Vulpes vulpes) from Portugal by molecular analysis, in order to evaluate the epidemiological role of these canids as reservoirs of infection.MethodsBlood and/or bone marrow samples were collected from 78 red foxes obtained in eight districts of northern, central and southern Portugal. Real-time polymerase chain reactions (PCR) amplified a 123 bp fragment of the 16S rRNA gene of Anaplasma spp. and Ehrlichia spp. and a 265 bp fragment of the L. infantum internal transcribed spacer one (ITS1) region of the rRNA operon evaluated by PCR-high resolution melt analysis (PCR-HRM), with sequencing of the DNA products. A phylogenetic analysis was carried out to compare these to other sequences from Anaplasma spp. and Ehrlichia spp. deposited in GenBank.ResultsA. platys was detected in 10 (14.5%) and E. canis in two (2.9%) out of 69 foxes; and L. infantum was detected in one (1.3%) of the 78 foxes. The prevalence of A. platys was significantly different from the prevalence of E. canis (p=0.016) and from that of L. infantum (p=0.002). No co-infections were found in any one of the 78 foxes. No statistically significant differences were found between the type of sample (blood and bone marrow), geographic regions (north/centre and south), age (<2 years and ≥2 years) and gender for any one of the agents.ConclusionsThis is the first known report of A. platys in red foxes worldwide, as well as the first molecular evidence of E. canis in foxes from Portugal. The moderate prevalence of A. platys suggests that red foxes may play a role in the epidemiology of infection with this bacterium and serve as a reservoir for domestic dogs.
Project description:Red foxes (Vulpes vulpes) have been recognized as natural reservoirs for multiple pathogens and a source of infection for domestic animals, wildlife and humans. To date, no reports are available on the Bartonella rochalimae and Hepatozoon canis infection in red foxes from China. In 2018-2022, a total of 16 red foxes were sampled in two counties and a city in Xinjiang Uygur Autonomous Region (XUAR) in northwest China. Subsequently analyzed by DNA extraction amplified by polymerase chain reaction (PCR). In the present study, based on nucleotide sequence and phylogenetic tree analyses, B. rochalimae and H. canis were molecularly identified in red foxes. Our findings provide the first molecular evidence of B. rochalimae and H. canis in red foxes from China.
Project description:In Europe, animal tuberculosis (TB) due to Mycobacterium bovis involves multi-host communities that include cattle and wildlife species, such as wild boar (Sus scrofa), badgers (Meles meles) and red deer (Cervus elaphus). Red fox (Vulpes vulpes) infections have also been recently reported in some TB endemic regions in the Iberian Peninsula and France, with some of the infected animals shedding M. bovis in urine and feces. In order to understand the pathogenesis of M. bovis infection in foxes and the associated risk of transmission, 12 captive foxes (6 females and 6 males) were inoculated orally with 2 × 107 colony-forming units of a French field isolate of M. bovis. Clinical samples (urine, feces and oropharyngeal swabs) were collected every four weeks and tested for molecular diagnosis and bacteriology. Serological responses were measured by IDEXX M. bovis Ab Test and Multi Antigen Print Immunoassay (MAPIA). At a post-mortem examination performed 12 weeks post infection (wpi), tissues were tested for the presence of M. bovis and associated gross and microscopic TB-like lesions. M. bovis was detected by PCR in bladder swabs of 3 animals at 12 wpi. It was also detected pre-mortem at different time points of the experiment in the oropharyngeal mucus of three individuals and in the feces of nine foxes, with two of them confirmed by bacteriology. All 12 foxes had at least 4 PCR positive samples (out of the 23 tested), and all but 1 fox had at least 1 culture positive sample. The culture negative fox was PCR positive in both retropharyngeal and mesenteric lymph nodes, in line with the results of the other animals. Seroconversion was observed in all foxes except one during the experiment, and in nine at the final time point. No gross visible lesions were found in any animal at the post-mortem examination. The histology showed small granulomas within the lymph nodes, tonsils, liver and lungs from eight animals, with the presence of few acid-fast bacilli. These results confirmed that all orally-infected foxes developed mild TB lesions but they were able to shed mycobacteria in about 75% of cases, 1 month post-infection (9 out 12 foxes). These results show that it is possible to induce typical TB infection experimentally in captive foxes, with measurable M. bovis excretion; such an experimental system could be useful for future evaluations of diagnostics and vaccines in this species.
Project description:BackgroundThis study aimed to determine the prevalence of Babesia species DNA in lung exudate samples collected from red foxes (Vulpes vulpes) from across Great Britain. Babesia are small piroplasmid parasites which are mainly transmitted through the bite of infected ticks of the family Ixodidae. Babesia can cause potentially fatal disease in a wide-range of mammalian species including humans, dogs and cattle, making them of significant economic importance to both the medical and veterinary fields.MethodsDNA was extracted from lung exudate samples of 316 foxes. A semi-nested PCR was used to initially screen samples, using universal Babesia-Theileria primers which target the 18S rRNA gene. A selection of positive PCR amplicons were purified and sequenced. Subsequently specific primers were designed to detect Babesia annae and used to screen all 316 DNA samples. Randomly selected positive samples were purified and sequenced (GenBank accession KT580786). Clones spanning a 1717 bp region of the 18S rRNA gene were generated from 2 positive samples, the resultant consensus sequence was submitted to GenBank (KT580785). Sequence KT580785 was used in the phylogenetic analysisResultsBabesia annae DNA was detected in the fox samples, in total 46/316 (14.6%) of samples tested positive for the presence of Babesia annae DNA. The central region of England had the highest prevalence at 36.7%, while no positive samples were found from Wales, though only 12 samples were tested from this region. Male foxes were found to have a higher prevalence of Babesia annae DNA than females in all regions of Britain. Phylogenetic and sequence analysis of the GenBank submissions (Accession numbers KT580785 and KT580786) showed 100% identity to Babesia sp.-'Spanish Dog' (AY534602, EU583387 and AF188001).ConclusionsThis is the first time that Babesia annae DNA has been reported in red foxes in Great Britain with positive samples being found across England and Scotland indicating that this parasite is well established within the red fox population of Britain. Phylogenetic analysis demonstrated that though B. annae is closely related to B. microti it is a distinct species.
Project description:BackgroundAngiostrongylus vasorum is the causative agent of canine angiostrongylosis, a severe snail-borne disease of dogs. Red foxes are important natural reservoirs of infection, and surveys of foxes provide a more objective picture of the parasite distribution. Our aim was to investigate the possibility of the presence of A. vasorum in red foxes from the western part of Romania and to analyse the risk factors related to the sex, age and geographic origin of the foxes. Between July 2016 and April 2017, 567 hunted red foxes from 10 counties of western Romania were examined by necropsy for the presence of lungworms.ResultsOverall, the infection with A. vasorum has been found in 24 red foxes (4.2%) originating in four counties (Mureș, Hunedoara, Sălaj and Cluj). There was no significant difference between the prevalence in males and females, between juveniles and adults and between counties.ConclusionsThis is the first report of autochthonous infections of A. vasorum in Romania, showing a relatively low prevalence and extending eastwards the known distributional range of this parasite in Europe. The presence of autochthonous cases in domestic dogs in Romania remains to be confirmed by further studies.