Project description:The composition, structure, and physicochemical properties of starch in sorghum grains greatly influence the processing and quality of the final products. In this study, 19 sorghum lines were examined to analyze various starch-related characteristics. Correlation analysis of these key traits, revealed a significant correlation between amylose and amylopectin content. Amylopectin was identified as the primary component, averaging 80.75% of the starch content. The distribution of starch chain lengths, as well as the degrees of polymerization and branching, varied significantly among the sorghum lines, maintaining an equilibrium relationship between chain lengths. The size distribution of starch granules also varied among the lines, showing an overall positive correlation. Thermodynamic properties were positively correlated with each other, with correlation coefficients exceeding 0.614. Peak viscosity, trough viscosity, and final viscosity during the pasting process were highly correlated with the setback value, with correlation coefficients of -0.520, -0.651, and 0.618, respectively. 19 sorghum lines were classified into three categories: glutinous, japonica, semi-glutinous. Japonica sorghum exhibited superior thermal stability and viscoelasticity. This study elucidates the relationship between starch fractions, structure and physicochemical properties, providing a crucial theoretical foundation for optimizing sorghum processing for food and industrial applications.
Project description:The aim of this study was to explore the similarities and differences of volatile organic pollutants (VOCs) in cooking fumes (COF) of residential buildings in different regions of China, as well as to evaluate their potential health risks. COF condensates were collected from 10 representative cities in China and analyzed by a GC-MS method. Their effects on α-glucosidase, acetylcholinesterase (AchE), and lactate dehydrogenase (LDH) activities were then detected to evaluate potential health risks. A total of 174 kinds of VOCs, including aldehydes, esters, hydrocarbons, alcohols, and carboxylic acid, were identified. There were 59 identical compounds in the northern and southern regions, and 56 common compounds in spicy and non-spicy regions. Health risk assessment results showed that COF condensate could inhibit the activity of α-glucosidase to varying degrees (61.73-129.25%), suggesting that it had a potential risk of causing hypoglycemia. Daily and 3 and 6 month intakes of COF in minors, adults, and the elderly had both activated and inhibited effects on AchE. The activated effect in the southern and spicy areas was higher than that in northern and non-spicy areas, revealing that different regions and dietary habits had different effects on the risk of neurological diseases caused by changes in AchE activity. For minors, adults, and the elderly, COF had different degrees of activation of LDH at different exposure times and regions. Activation in the northern and non-spicy areas was higher than that in southern and spicy areas, suggesting that the health risks caused by changes in LDH activity levels were significantly increased.
Project description:Although whole grain (WG) sorghum is affordable and a healthier alternative to gluten-free pastas (GFPa), sorghum diversity requires evaluation for application in pasta. We aimed to develop GFPa using six sorghum hybrids. White commercial flour (WCF) and sorghums with brown (BRS 305 and 1167048), red (BRS 330 and BRS 332), and white (CMSXS 180) pericarp colors. Total phenolic content (TPC), total condensed tannins (TAN), total antioxidant activity (TAA-FRAP and DPPH), resistant starch (RS), cooking properties, texture, and sensory evaluation were carried out in sorghum pasta. The statistical analyses were ANOVA, Tukey and Friedman test, and multiple factorial analyses. Brown sorghum GFPa showed the best results for bioactive compounds (RS (1.8 and 2.9 g/100 g), TPC (69.9 and 42.8 mg/100 g), TAN (16.9 and 9.4 mg proanthocyanidin/100 g), TAA for FRAP (305 and 195 mM Teq/g), and DPPH (8.7 and 9.0 mg/mL)), but also the highest soluble solids loss (8.0 g/100 g) and lower flavor acceptance for BRS 305. BRS 332 was highlighted for its higher flavor acceptance and intermediary phenolics content. The most accepted pasta was obtained with WCF, and the least accepted with the brown BRS 305. Sweetness (SWE), soluble starch (SS), and DPPH were associated with liking. The main negative variables were WG_flavor, brown color, FRAP, sandy surface (SAN), WG_odor, and TAN. Sorghum hybrids of different pericarp colors are feasible for GFPa production, leading to differences in pasta quality. SAN and GRA, associated with disliking in antioxidant-rich GFPa, could be improved by milling process adjustments. Increasing the SS proportion and SWE with flavors can contribute to the balance between liking and nutritional advantages.
Project description:In this study, the fungal community structure, metabolites, antioxidant ability, and taste characteristics of five Fu brick tea (FBT) from different regions of China were determined and compared. A total of 69 operational taxonomic units (OTUs) were identified and assigned into 5 phyla and 27 genera, with Eurotium as the predominant genus in all samples. Hunan (HN) sample had the strongest fungal diversity and richness, followed by Guangxi (GX) sample, and Zhejiang (ZJ) sample had the lowest. GX sample had higher amounts of gallic acid (GA), total catechins, gallocatechin (GC), and epicatechin gallate (ECG) as well as antioxidant activity than the other samples. The levels of total phenolics, total flavonoids, epigallocatechin (EGC), catechin, epicatechin (EC), thearubigins (TRs), and theaflavins (TFs) were the highest in the ZJ sample. Guizhou (GZ) and Shaanxi (SX) samples contained the highest contents of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG), respectively. Total phenolics, GA, EC, CG, and TFs were positively associated with most of fungal genera. Total phenolic content (TPC), total flavonoid content (TFC), and most of catechins contributed to the antioxidant activities of FBT. HN sample had the strongest sourness and sweetness, ZJ sample had the strongest saltiness, SX sample had the strongest umami, and GZ sample had the strongest astringency, which was ascribed to the varied metabolites. This work reveals that FBT in different regions vary greatly in fungal community, metabolites, antioxidant activity, and taste characteristics, and provides new insight into the quality characteristics formation of FBT in different regions.
Project description:Little is known about the phytochemical composition of iron walnuts. Differences in the geographical origin of iron walnuts associated with economic benefits should also be examined. In this study, the phytochemical composition (fatty acids, Vitamin E, total polyphenols and flavonoids, amino acids, and minerals) of iron walnuts in China was investigated. The results showed that there were significant differences (p < 0.05) in the phytochemical composition of iron walnut oils and flours from different regions. Positive (r > 0.5, p < 0.05) and negative (r < - 0.5, p < 0.05) correlations were found between amino acids/minerals and amino acids/oleic acid, with the highest correlation coefficient (r = 0.742, p < 0.05) between Cu and tyrosine. In addition, based on the 12 phytochemical fingerprints selected by random forest, a geographical-origin identification model for iron walnuts was established, with a corresponding correct classification rate of 96.6%. The top three phytochemical fingerprints for the geographical-origin identification of iron walnut were microelements, macroelements, and antioxidant composition, with contribution rates of 61.7%, 18.1%, and 9.9%, respectively.
Project description:Six sorghum varieties containing different amylose were selected to investigate the structural and physicochemical characteristics of starches and endosperm texture of grains. The results showed that the outer layer endosperm of sorghum grain changed from waxy to corneous, and its starch granules were more compactly packed and exhibited the spindle-shaped holes with the increase of amylose content. Higher amylose starch granules exhibited fewer and smaller micropores on the surface and were more likely to deform and agglomerate into larger amorphous particles after heated. Amylose content of sorghum starches was negatively correlated to granule size, relative crystallinity, and the proportion of the long branch chains (DP = 25-36 and > 36), whereas positively correlated to the proportion of the short branch chains (DP = 6-12 and 13-24). Amylose content had negative correlations with T o , T p , ΔH, PV, and SDS (p < .05), positive corrections with FV, SB, and RDS (p < .05), and no correlations with T c , HPV, BD, and RS. It could be concluded that amylose content affected the endosperm texture of sorghum grain and had strong correlations with structural and physicochemical properties of sorghum starch. These findings may help identify uses for these sorghum varieties in baijiu production.
Project description:To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.
Project description:The epiphytic bacteria in aquatic ecosystems, inhabiting a unique ecological niche with significant ecological function, have long been the subject of attention. Habitat characteristics and plant species are believed to be important in controlling the assembly of epiphytic bacteria. However, the underlying principle governing the assembly of the epiphytic bacterial community on macrophytes is far from clear. In this study, we systematically compared the diversity and community composition of epiphytic bacteria both in different habitats and on different species of macrophytes where they were attached. Results suggested that neither the plant species nor the habitat had a significant effect on the diversity and community of epiphytic bacteria independently, indicating that the epiphytic bacterial community composition was correlated to both geographical distance and individual species of macrophytes. Furthermore, almost all of the abundant taxa were shared between different lake regions or macrophyte species, and the most abundant bacteria belonged to Proteobacteria and Firmicutes. Our results demonstrated that the competitive lottery model may explain the pattern of epiphytic bacterial colonization of submerged macrophyte surfaces. This research could provide a new perspective for exploring plant-microbe interaction in aquatic systems and new evidence for the lottery model as the mechanism best explaining the assembly of epiphytic bacteria.
Project description:Cow milk is rich in proteins, fats, carbohydrates, and minerals; however, its precise nutrient content varies based on various factors. In the current study, we evaluated the differences in the fatty acid and protein contents of milk and the factors associated with these differences. To achieve this, samples were collected from seven types of cows in different regions. These included samples from three dairy breeds: Chinese Holstein milk from Beijing, China (BH), Chinese Holstein milk (HH) and Jersey milk (JS) from Hebei province, China; and four dairy/meat breeds: Sanhe milk (SH) from Inner Mongolia Autonomous Region, China, Xinjiang brown milk (XH) and Simmental milk (SI) from Xinjiang Uygur Autonomous Region, China, and Shu Xuanhua milk (SX) from Sichuan province, China. Breed significantly affects total fat, fatty acid, and protein contents. Additionally, geographic region significantly affects the contents of different fatty acids, α-lactalbumin, and lactoferrin. JS has the highest total fat and casein contents. XH samples contain significantly higher unsaturated fatty acid content than BH samples and do not differ significantly from JS. Additionally, the low β-lactoglobulin and high lactoferrin contents in XH samples may be favorable for the growth and development of infants. Our results may inform the development of dairy products from different cow breeds and advance the process of accurate breed identification.
Project description:Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only "Candidatus Scalindua," albeit with a high microdiversity. The genus "Ca. Scalindua" comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments.