Project description:BackgroundArtificial intelligence (AI) has been described as the "fourth industrial revolution" with transformative and global implications, including in healthcare, public health, and global health. AI approaches hold promise for improving health systems worldwide, as well as individual and population health outcomes. While AI may have potential for advancing health equity within and between countries, we must consider the ethical implications of its deployment in order to mitigate its potential harms, particularly for the most vulnerable. This scoping review addresses the following question: What ethical issues have been identified in relation to AI in the field of health, including from a global health perspective?MethodsEight electronic databases were searched for peer reviewed and grey literature published before April 2018 using the concepts of health, ethics, and AI, and their related terms. Records were independently screened by two reviewers and were included if they reported on AI in relation to health and ethics and were written in the English language. Data was charted on a piloted data charting form, and a descriptive and thematic analysis was performed.ResultsUpon reviewing 12,722 articles, 103 met the predetermined inclusion criteria. The literature was primarily focused on the ethics of AI in health care, particularly on carer robots, diagnostics, and precision medicine, but was largely silent on ethics of AI in public and population health. The literature highlighted a number of common ethical concerns related to privacy, trust, accountability and responsibility, and bias. Largely missing from the literature was the ethics of AI in global health, particularly in the context of low- and middle-income countries (LMICs).ConclusionsThe ethical issues surrounding AI in the field of health are both vast and complex. While AI holds the potential to improve health and health systems, our analysis suggests that its introduction should be approached with cautious optimism. The dearth of literature on the ethics of AI within LMICs, as well as in public health, also points to a critical need for further research into the ethical implications of AI within both global and public health, to ensure that its development and implementation is ethical for everyone, everywhere.
Project description:BackgroundThere is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health.ObjectiveThis study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care.MethodsWe searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review.ResultsWe identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients.ConclusionsThis scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients' perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
Project description:IntroductionArtificial intelligence based on machine learning has made large advancements in many fields of science and medicine but its impact on pharmacovigilance is yet unclear.ObjectiveThe present study conducted a scoping review of the use of artificial intelligence based on machine learning to understand how it is used for pharmacovigilance tasks, characterize differences with other fields, and identify opportunities to improve pharmacovigilance through the use of machine learning.DesignThe PubMed, Embase, Web of Science, and IEEE Xplore databases were searched to identify articles pertaining to the use of machine learning in pharmacovigilance published from the year 2000 to September 2021. After manual screening of 7744 abstracts, a total of 393 papers met the inclusion criteria for further analysis. Extraction of key data on study design, data sources, sample size, and machine learning methodology was performed. Studies with the characteristics of good machine learning practice were defined and manual review focused on identifying studies that fulfilled these criteria and results that showed promise.ResultsThe majority of studies (53%) were focused on detecting safety signals using traditional statistical methods. Of the studies that used more recent machine learning methods, 61% used off-the-shelf techniques with minor modifications. Temporal analysis revealed that newer methods such as deep learning have shown increased use in recent years. We found only 42 studies (10%) that reflect current best practices and trends in machine learning. In the subset of 154 papers that focused on data intake and ingestion, 30 (19%) were found to incorporate the same best practices.ConclusionAdvances from artificial intelligence have yet to fully penetrate pharmacovigilance, although recent studies show signs that this may be changing.
Project description:There is a growing interest in the application of artificial intelligence (AI) to orthopaedic surgery. This review aims to identify and characterise research in this field, in order to understand the extent, range and nature of this work, and act as springboard to stimulate future studies. A scoping review, a form of structured evidence synthesis, was conducted to summarise the use of AI in orthopaedics. A literature search (1946-2019) identified 222 studies eligible for inclusion. These studies were predominantly small and retrospective. There has been significant growth in the number of papers published in the last three years, mainly from the USA (37%). The majority of research used AI for image interpretation (45%) or as a clinical decision tool (25%). Spine (43%), knee (23%) and hip (14%) were the regions of the body most commonly studied. The application of artificial intelligence to orthopaedics is growing. However, the scope of its use so far remains limited, both in terms of its possible clinical applications, and the sub-specialty areas of the body which have been studied. A standardized method of reporting AI studies would allow direct assessment and comparison. Prospective studies are required to validate AI tools for clinical use.
Project description:IntroductionCardiac arrest is a significant cause of premature mortality and severe disability. Despite the death rate steadily decreasing over the previous decade, only 22% of survivors achieve good clinical status and only 25% of patients survive until their discharge from the hospital. The objective of this scoping review was to review relevant AI modalities and the main potential applications of AI in resuscitation.MethodsWe conducted the literature search for related studies in PubMed, EMBASE, and Google Scholar. We included peer-reviewed publications and articles in the press, pooling and characterizing the data by their model types, goals, and benefits.ResultsAfter identifying 268 original studies, we chose 59 original studies (reporting 1,817,419 patients) to include in the qualitative synthesis. AI-based methods appear to be superior to traditional methods in achieving high-level performance.ConclusionAI might be useful in predicting cardiac arrest, heart rhythm disorders, and post-cardiac arrest outcomes, as well as in the delivery of drone-delivered defibrillators and notification of dispatchers. AI-powered technologies could be valuable assistants to continuously track patient conditions. Healthcare professionals should assist in the research and development of AI-powered technologies as well as their implementation into clinical practice.
Project description:BackgroundArtificial intelligence (AI) has revolutionized health care delivery in recent years. There is an increase in research for advanced AI techniques, such as deep learning, to build predictive models for the early detection of diseases. Such predictive models leverage mobile health (mHealth) data from wearable sensors and smartphones to discover novel ways for detecting and managing chronic diseases and mental health conditions.ObjectiveCurrently, little is known about the use of AI-powered mHealth (AIM) settings. Therefore, this scoping review aims to map current research on the emerging use of AIM for managing diseases and promoting health. Our objective is to synthesize research in AIM models that have increasingly been used for health care delivery in the last 2 years.MethodsUsing Arksey and O'Malley's 5-point framework for conducting scoping reviews, we reviewed AIM literature from the past 2 years in the fields of biomedical technology, AI, and information systems. We searched 3 databases, PubsOnline at INFORMS, e-journal archive at MIS Quarterly, and Association for Computing Machinery (ACM) Digital Library using keywords such as "mobile healthcare," "wearable medical sensors," "smartphones", and "AI." We included AIM articles and excluded technical articles focused only on AI models. We also used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) technique for identifying articles that represent a comprehensive view of current research in the AIM domain.ResultsWe screened 108 articles focusing on developing AIM models for ensuring better health care delivery, detecting diseases early, and diagnosing chronic health conditions, and 37 articles were eligible for inclusion, with 31 of the 37 articles being published last year (76%). Of the included articles, 9 studied AI models to detect serious mental health issues, such as depression and suicidal tendencies, and chronic health conditions, such as sleep apnea and diabetes. Several articles discussed the application of AIM models for remote patient monitoring and disease management. The considered primary health concerns belonged to 3 categories: mental health, physical health, and health promotion and wellness. Moreover, 14 of the 37 articles used AIM applications to research physical health, representing 38% of the total studies. Finally, 28 out of the 37 (76%) studies used proprietary data sets rather than public data sets. We found a lack of research in addressing chronic mental health issues and a lack of publicly available data sets for AIM research.ConclusionsThe application of AIM models for disease detection and management is a growing research domain. These models provide accurate predictions for enabling preventive care on a broader scale in the health care domain. Given the ever-increasing need for remote disease management during the pandemic, recent AI techniques, such as federated learning and explainable AI, can act as a catalyst for increasing the adoption of AIM and enabling secure data sharing across the health care industry.
Project description:BackgroundA rising number of conversational agents or chatbots are equipped with artificial intelligence (AI) architecture. They are increasingly prevalent in health care applications such as those providing education and support to patients with chronic diseases, one of the leading causes of death in the 21st century. AI-based chatbots enable more effective and frequent interactions with such patients.ObjectiveThe goal of this systematic literature review is to review the characteristics, health care conditions, and AI architectures of AI-based conversational agents designed specifically for chronic diseases.MethodsWe conducted a systematic literature review using PubMed MEDLINE, EMBASE, PyscInfo, CINAHL, ACM Digital Library, ScienceDirect, and Web of Science. We applied a predefined search strategy using the terms "conversational agent," "healthcare," "artificial intelligence," and their synonyms. We updated the search results using Google alerts, and screened reference lists for other relevant articles. We included primary research studies that involved the prevention, treatment, or rehabilitation of chronic diseases, involved a conversational agent, and included any kind of AI architecture. Two independent reviewers conducted screening and data extraction, and Cohen kappa was used to measure interrater agreement.A narrative approach was applied for data synthesis.ResultsThe literature search found 2052 articles, out of which 10 papers met the inclusion criteria. The small number of identified studies together with the prevalence of quasi-experimental studies (n=7) and prevailing prototype nature of the chatbots (n=7) revealed the immaturity of the field. The reported chatbots addressed a broad variety of chronic diseases (n=6), showcasing a tendency to develop specialized conversational agents for individual chronic conditions. However, there lacks comparison of these chatbots within and between chronic diseases. In addition, the reported evaluation measures were not standardized, and the addressed health goals showed a large range. Together, these study characteristics complicated comparability and open room for future research. While natural language processing represented the most used AI technique (n=7) and the majority of conversational agents allowed for multimodal interaction (n=6), the identified studies demonstrated broad heterogeneity, lack of depth of reported AI techniques and systems, and inconsistent usage of taxonomy of the underlying AI software, further aggravating comparability and generalizability of study results.ConclusionsThe literature on AI-based conversational agents for chronic conditions is scarce and mostly consists of quasi-experimental studies with chatbots in prototype stage that use natural language processing and allow for multimodal user interaction. Future research could profit from evidence-based evaluation of the AI-based conversational agents and comparison thereof within and between different chronic health conditions. Besides increased comparability, the quality of chatbots developed for specific chronic conditions and their subsequent impact on the target patients could be enhanced by more structured development and standardized evaluation processes.
Project description:BackgroundApplying artificial intelligence (AI) to nursing practice has dramatically enhanced healthcare delivery in Arab countries. However, AI application also raises complex moral issues, including patient privacy, data security, responsibility, transparency, and equity in decision-making.AimA systematic analysis of the ethical issues surrounding the application of AI in nursing practice in Arab nations is carried out in this review, highlighting the most important ethical issues and recommending responsible AI integration.MethodsA comprehensive literature search was conducted across major databases. Following the initial identification of 150 articles, 120 were selected for full-text review based on the title and abstract screening. Subsequently, 50 pertinent studies were incorporated into this review.ResultsNumerous significant ethical concerns regarding AI application in decision-making processes were identified. The assessment also highlighted the possible effects of AI on the nurse-patient interaction and the critical role played by the ethics committees and regulatory frameworks in resolving these issues.ConclusionEthical frameworks must be established to guarantee AI integration into nursing practice, safeguard patients' welfare, and strengthen the trust between healthcare providers and patients.Clinical trialNo clinical Trial.
Project description:Background: Artificial intelligence (AI) has emerged as a transformative tool in healthcare, particularly in drug and biomarker discovery, where it can enhance precision, streamline discovery processes, and optimize treatment strategies. Despite its potential, the application of AI in glioblastoma (GB) research, especially in identifying novel biomarkers and therapeutic targets, remains underexplored. The aim of this review is to map the existing literature on AI-driven approaches for biomarker and drug discovery in GB, highlighting key trends and gaps in current research. Design: Following a PRISMA methodology, this scoping review examined studies published between 2012 and 2024. Searches were conducted across multiple databases, including MEDLINE (PubMed), Scopus, the Cochrane Library, and Web of Science (WOS). Eligible studies were screened, and relevant data were extracted and synthesized to provide a comprehensive overview of AI applications in GB research. Results: A total of 224 records were identified, including 210 from PubMed, 104 from Scopus, 4 from WOS, and 6 from the Cochrane Library. After screening and applying eligibility criteria, 33 studies were included in the final review. These studies showcased diverse AI methodologies applied to both drug discovery and biomarker identification, focusing on various aspects of GB biology and treatment. Conclusions: This scoping review reveals an increasing interest in AI-driven strategies for biomarker and drug discovery in GB, with promising initial results. However, further large-scale, rigorous studies are needed to validate real-world applications of AI and the development of standardized protocols to enhance reproducibility and clinical translation.
Project description:The increasing prevalence of type 2 diabetes mellitus (T2DM) and its associated health complications highlight the need to develop predictive models for early diagnosis and intervention. While many artificial intelligence (AI) models for T2DM risk prediction have emerged, a comprehensive review of their advancements and challenges is currently lacking. This scoping review maps out the existing literature on AI-based models for T2DM prediction, adhering to the PRISMA extension for Scoping Reviews guidelines. A systematic search of longitudinal studies was conducted across four databases, including PubMed, Scopus, IEEE-Xplore, and Google Scholar. Forty studies that met our inclusion criteria were reviewed. Classical machine learning (ML) models dominated these studies, with electronic health records (EHR) being the predominant data modality, followed by multi-omics, while medical imaging was the least utilized. Most studies employed unimodal AI models, with only ten adopting multimodal approaches. Both unimodal and multimodal models showed promising results, with the latter being superior. Almost all studies performed internal validation, but only five conducted external validation. Most studies utilized the area under the curve (AUC) for discrimination measures. Notably, only five studies provided insights into the calibration of their models. Half of the studies used interpretability methods to identify key risk predictors revealed by their models. Although a minority highlighted novel risk predictors, the majority reported commonly known ones. Our review provides valuable insights into the current state and limitations of AI-based models for T2DM prediction and highlights the challenges associated with their development and clinical integration.