Project description:The phytohormone abscisic acid (ABA) regulates plant growth and development, as well as responses to various stresses, such as salt and drought. The wheat TaFBA1 gene, which encodes an F-box protein, was previously identified in our laboratory by homologous cloning. We previously found that TaFBA1 expression was induced by ABA and drought stress. In this study, wild-type (WT), TaFBA1 over-expressing (OEs), TaFBA1 homologous gene mutants, and TaFBA1 recovery (Rs) Arabidopsis plants were used. We found that the germination rate, the cotyledon greening rate, the root length, and the photosynthetic performance of TaFBA1 OE plants were better than those of WT under drought and ABA conditions, but mutant plants showed the opposite trend, and overexpression of TaFBA1 in mutants can recover their phenotype. In addition, TaFBA1 was found to be a negative regulator of ABA-induced stoma movement; mRNA transcription of certain ABA signaling-related genes was lower in TaFBA1 OE plants than in WT plants following ABA treatment. Further, we found that TaFBA1 can interact with RCAR1 (an ABA receptor) and ABI5. BiFC assay showed that TaFBA1 may interact with RCAR1 in the plasma membrane. In addition, accumulation of ROS and MDA in TaFBA1 OE plants was lower than that in the WT plants after ABA and drought treatments. Based on these results, we suggest that TaFBA1-regulated ABA insensitivity may be dependent on regulating ABA-mediated gene expression through interacting with RCAR1 and ABI5. Increased antioxidant competence and decreased ROS accumulation may be an important mechanism that underlies improved drought tolerance in TaFBA1 OE plants.
Project description:Drought stress severely impairs plant growth and production. Lipoxygenase (LOX), a master regulator for lipid peroxidation, is critical for direct or indirect response to abiotic stresses. Here, we found that drought stress induced the transcription of CmLOX10 in leaves of oriental melon seedlings. Reverse genetic approaches and physiological analyses revealed that silencing CmLOX10 increased drought susceptibility and stomatal aperture in oriental melon seedlings, and that ectopic overexpression of CmLOX10 in Arabidopsis enhanced drought tolerance and decreased the stomatal aperture. Moreover, the transcription of jasmonic acid (JA)-related genes and JA accumulation were significantly induced in CmLOX10-overexpressed Arabidopsis, which were reversely suppressed in CmLOX10-silenced seedlings during the stage of drought stress. Foliar application of JA further verified that JA enhanced drought tolerance and induced stomatal closure in leaves of melon seedlings. In addition, the feedback regulation of CmLOX10 was induced by JA signaling, and the expression level of CmMYC2 was increased by JA and drought treatment. Yeast one-hybrid analysis showed that CmMYC2 directly bound to the promoter of CmLOX10. In summary, we identified the important roles of CmLOX10 in the regulation of drought tolerance in oriental melon seedlings through JA- mediated stomatal closure and JA signaling-mediated feedback through CmMYC2.
Project description:Plants as sessile organisms constantly respond to environmental stress during their growth and development. The regulation of transpiration via stomata plays crucial roles in plant adaptation to drought stress. Many enzyme-encoding genes are involved in regulation of transpiration via modulating stomatal opening and closure. Here, we demonstrate that Capsicum annuum Drought Induced Late embryogenesis abundant protein 1 (CaDIL1) gene is a critical regulator of transpirational water loss in pepper. The expression of CaDIL1 in pepper leaves was upregulated after exposure to abscisic acid (ABA) and drought. Phenotype analysis showed that CaDIL1-silenced pepper and CaDIL1-overexpressing (OX) Arabidopsis transgenic plants exhibited reduced and enhanced drought tolerance, respectively, accompanied by an altered water loss. Furthermore, ABA sensitivity was significantly lower in CaDIL1-silenced pepper, but higher in CaDIL1-OX plants, than that in control plants, which resulted in opposite responses to drought stress in these two plant types. Collectively, our data suggest that CaDIL1 positively regulates the ABA signaling and drought stress tolerance.
Project description:Drought stress is a major agricultural problem restricting the growth, development, and productivity of plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) significantly influence the plant response to different stresses. However, the molecular mechanisms of CBL-CIPK in the drought stress response of pepper are still unknown. Here, the function of CaCIPK3 in the regulation of drought stress in pepper (Capsicum annuum L.) was explored. Transcriptomic data and quantitative real-time PCR (qRT-PCR) analysis revealed that CaCIPK3 participates in the response to multiple stresses. Knockdown of CaCIPK3 in pepper increased the sensitivity to mannitol and methyl jasmonate (MeJA). Transient overexpression of CaCIPK3 improved drought tolerance by enhancing the activities of the antioxidant system and positively regulating jasmonate (JA)-related genes. Ectopic expression of CaCIPK3 in tomato also improved drought and MeJA resistance. As the CaCIPK3-interacting partner, CaCBL2 positively influenced drought resistance. Additionally, CaWRKY1 and CaWRKY41 directly bound the CaCIPK3 promoter to influence its expression. This study shows that CaCIPK3 acts as a positive regulator in drought stress resistance via the CBL-CIPK network to regulate MeJA signaling and the antioxidant defense system.
Project description:Low temperature stress represents a significant abiotic stress factor affecting rice yields. While the structure and some of the functions of cell cycle protein-dependent protein kinase inhibitor (CKI) family proteins have been the subject of study, their relevance to cold tolerance in rice has been less investigated. In this study, we cloned OsEL2 (LOC_Os03g01740) and constructed anti-expression lines of this gene. The resulting lines exhibited significant cold sensitivity and displayed greater oxidative damage than wild type Nippobare (Nip). However, the activities of antioxidant enzymes, such as catalase (CAT), were significantly elevated in OsEL2-AX plants in comparison to Nip following exposure to 4 °C stress. RNA sequencing revealed the presence of 18,822 differential genes, with the majority of them being expressed with temporal specificity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that a considerable number of differentially expressed genes (DEGs) are involved in the metabolism of amino acids, lipids, and terpenoids. Weighted gene co-expression network analysis (WGCNA) revealed a close relationship between the genes in the turquoise and light green modules and rice cold tolerance traits. These genes were predominantly enriched in terpene metabolism and the metabolism of various plant secondary metabolites, suggesting that OsEL2 influences rice cold tolerance through the metabolism of these two classes of substances. An analysis of the genes within these two modules using transcription factor (TF) enrichment and KEGG enrichment revealed that they are predominantly regulated by mitogen-activated protein kinase (MAPK) and ethylene signaling pathways. Furthermore, we found that tryptophan metabolism, phenylalanine metabolism, and monoterpene synthesis were enriched in down-regulated pathway enrichment analysis. In addition, we also found that the MAPK signaling pathway was enriched in the KEGG enrichment analysis of AX2 with Nip. The results demonstrate that anti-expression of OsEL2 is associated with a notable decline in rice tolerance to cold stress.
Project description:The WRKY family of transcription factors plays a pivotal role in plant responses to biotic and abiotic stress. The WRKY Group III transcription factor OsWRKY114 is a positive regulator of innate immunity against Xanthomonas oryzae pv. oryzae; however, its role in abiotic stress responses is largely unknown. In this study, we showed that the abundant OsWRKY114 transcripts present in transgenic rice plants are reduced under drought conditions. The overexpression of OsWRKY114 significantly increased drought sensitivity in rice, which resulted in a lower survival rate after drought stress. Moreover, we showed that stomatal closure, which is a strategy to save water under drought, is restricted in OsWRKY114-overexpressing plants compared with wild-type plants. The expression levels of PYR/PYL/RCAR genes, such as OsPYL2 and OsPYL10 that confer drought tolerance through stomatal closure, were also markedly lower in the OsWRKY114-overexpressing plants. Taken together, these results suggest that OsWRKY114 negatively regulates plant tolerance to drought stress via inhibition of stomatal closure, which would otherwise prevent water loss in rice.
Project description:The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice. Histochemical staining and qPCR analysis indicated that the expression level of OsLOX1 was relatively high in leaves and early germinating seeds. Our findings revealed that mutant lines with CRISPR/Cas9-induced knockout of OsLOX1 exhibited reduced tolerance to drought stress compared with the wild-type. This was accompanied by elevated levels of H2O2 and malondialdehyde, and a decrease in the expression levels of genes associated with antioxidant enzymes. Furthermore, knockout of OsLOX1 reduced the longevity of rice seeds increased H2O2 and MDA levels, and decreased the activities of the antioxidant enzymes superoxide dismutase and catalase, compared with the wild-type. These findings demonstrated that OsLOX1 positively regulated rice seed vigor and drought stress.
Project description:Fifteen transcription factors in the CAMTA (calmodulin binding transcription activator) family of soybean were reported to differentially regulate in multiple stresses; however, their functional analyses had not yet been attempted. To characterize their role in stresses, we first comprehensively analyzed the GmCAMTA family in silico and thereafter determined their expression pattern under drought. The bioinformatics analysis revealed multiple stress-related cis-regulatory elements including ABRE, SARE, G-box and W-box, 10 unique miRNA (microRNA) targets in GmCAMTA transcripts and 48 proteins in GmCAMTAs' interaction network. We then cloned the 2769 bp CDS (coding sequence) of GmCAMTA12 in an expression vector and overexpressed in soybean and Arabidopsis through Agrobacterium-mediated transformation. The T3 (Transgenic generation 3) stably transformed homozygous lines of Arabidopsis exhibited enhanced tolerance to drought in soil as well as on MS (Murashige and Skoog) media containing mannitol. In their drought assay, the average survival rate of transgenic Arabidopsis lines OE5 and OE12 (Overexpression Line 5 and Line 12) was 83.66% and 87.87%, respectively, which was ~30% higher than that of wild type. In addition, the germination and root length assays as well as physiological indexes such as proline and malondialdehyde contents, catalase activity and leakage of electrolytes affirmed the better performance of OE lines. Similarly, GmCAMTA12 overexpression in soybean promoted drought-efficient hairy roots in OE chimeric plants as compare to that of VC (Vector control). In parallel, the improved growth performance of OE in Hoagland-PEG (polyethylene glycol) and on MS-mannitol was revealed by their phenotypic, physiological and molecular measures. Furthermore, with the overexpression of GmCAMTA12, the downstream genes including AtAnnexin5, AtCaMHSP, At2G433110 and AtWRKY14 were upregulated in Arabidopsis. Likewise, in soybean hairy roots, GmELO, GmNAB and GmPLA1-IId were significantly upregulated as a result of GmCAMTA12 overexpression and majority of these upregulated genes in both plants possess CAMTA binding CGCG/CGTG motif in their promoters. Taken together, we report that GmCAMTA12 plays substantial role in tolerance of soybean against drought stress and could prove to be a novel candidate for engineering soybean and other plants against drought stress. Some research gaps were also identified for future studies to extend our comprehension of Ca-CaM-CAMTA-mediated stress regulatory mechanisms.
Project description:Identification of central genes governing plant drought tolerance is fundamental to molecular breeding and crop improvement. Here, maize transcription factor ZmHsf28 is identified as a positive regulator of plant drought responses. ZmHsf28 exhibited inducible gene expression in response to drought and other abiotic stresses. Overexpression of ZmHsf28 diminished drought effects in Arabidopsis and maize. Gene silencing of ZmHsf28 via the technology of virus-induced gene silencing (VIGS) impaired maize drought tolerance. Overexpression of ZmHsf28 increased jasmonate (JA) and abscisic acid (ABA) production in transgenic maize and Arabidopsis by more than two times compared to wild-type plants under drought conditions, while it decreased reactive oxygen species (ROS) accumulation and elevated stomatal sensitivity significantly. Transcriptomic analysis revealed extensive gene regulation by ZmHsf28 with upregulation of JA and ABA biosynthesis genes, ROS scavenging genes, and other drought related genes. ABA treatment promoted ZmHsf28 regulation of downstream target genes. Specifically, electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assay indicated that ZmHsf28 directly bound to the target gene promoters to regulate their gene expression. Taken together, our work provided new and solid evidence that ZmHsf28 improves drought tolerance both in the monocot maize and the dicot Arabidopsis through the implication of JA and ABA signaling and other signaling pathways, shedding light on molecular breeding for drought tolerance in maize and other crops.
Project description:Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.