Project description:BackgroundEndometriosis (EMs) is a common condition that causes dysmenorrhea, chronic pelvic pain, and infertility, affecting millions of women worldwide. Despite the use of assisted reproductive technology, EMs patients often experience lower embryo implantation rates and recurrent implantation failure (RIF) due to impaired uterine endometrial receptivity. This study aims to identify shared diagnostic genes and underlying mechanisms between EMs and RIF using integrated transcriptomic analysis and machine learning with Gene Expression Omnibus (GEO) datasets.MethodsWe analyzed GSE11691, GSE7305, GSE111974, and GSE103465 as training datasets for EMs and RIF, and GSE25628 and GSE92324 as validation datasets. Differentially expressed genes (DEGs) and Weighted Gene Co-Expression Network Analysis (WGCNA) identified key genes specific to and shared by EMs and RIF. Machine learning algorithms were used to determine the shared diagnostic gene, whose performance was validated in both training and validation datasets. Single-gene Gene Set Enrichment Analysis (GSEA) revealed shared biological processes in EMs and RIF, while CIBERSORT analysis highlighted similarities and differences in immune infiltration between the two conditions. Finally, endometrial samples from healthy controls, EMs, and RIF patients were collected, and qRT-PCR was performed to validate the diagnostic gene.ResultsWe identified 48 shared key genes between EMs and RIF. The diagnostic gene EHF was selected through machine learning algorithms, and its diagnostic performance was validated in both training and validation datasets. ROC curve analysis demonstrated excellent diagnostic accuracy of EHF for both diseases. Gene Set Enrichment Analysis (GSEA) revealed that both conditions shared biological processes, including dysregulated extracellular matrix remodeling and abnormal immune infiltration. Furthermore, we validated the expression of EHF in endometrial samples from healthy controls, EMs, and RIF patients. Additionally, we characterized the immune microenvironment in EMs and RIF, highlighting changes in immune cell components associated with EHF.DiscussionThe diagnostic gene EHF identified in this study may serve as a key link between EMs and RIF. The shared pathological processes in both conditions involve alterations in the extracellular matrix and subsequent changes in the immune microenvironment. These findings provide novel insights into potential therapeutic strategies for improving infertility treatment in patients with EMs.
Project description:Estrogenic and inflammatory components play key roles in a broad range of diseases including endometriosis, a common estrogen-dependent gynecological disorder in which endometrial tissue creates inflammatory lesions at extrauterine sites, causing pelvic pain and reduced fertility. Current medical therapies focus primarily on reducing systemic levels of estrogens, but these are of limited effectiveness and have considerable side effects. We developed estrogen receptor (ER) ligands, chloroindazole (CLI) and oxabicycloheptene sulfonate (OBHS), which showed strong ER-dependent anti-inflammatory activity in a preclinical model of endometriosis that recapitulates the estrogen dependence and inflammatory responses of the disease in immunocompetent mice and in primary human endometriotic stromal cells in culture. Estrogen-dependent phenomena, including cell proliferation, cyst formation, vascularization, and lesion growth, were all arrested by CLI or OBHS, which prevented lesion expansion and also elicited regression of established lesions, suppressed inflammation, angiogenesis, and neurogenesis in the lesions, and interrupted crosstalk between lesion cells and infiltrating macrophages. Studies in ERα or ERβ knockout mice indicated that ERα is the major mediator of OBHS effectiveness and ERβ is dominant in CLI actions, implying involvement of both ERs in endometriosis. Neither ligand altered estrous cycling or fertility at doses that were effective for suppression of endometriosis. Hence, CLI and OBHS are able to restrain endometriosis by dual suppression of the estrogen-inflammatory axis. Our findings suggest that these compounds have the desired characteristics of preventive and therapeutic agents for clinical endometriosis and possibly other estrogen-driven and inflammation-promoted disorders.
Project description:UNLABELLED: Fibrin, a homologous polymer, is the natural scaffold of wound healing and therefore a candidate as a carrier for cell transplantation. We explored a novel matrix-based implant cartilage repair composed of both fibrin and hyaluronan in a defined ratio that takes advantage of the biological and mechanical properties of these two elements. The matrix was seeded with autologous chondrocytes expanded in the presence of a proprietary growth factor variant designed to preserve their chondrogenic potential. We prospectively followed eight patients with symptomatic-chronic cartilage defects treated with this carrier. Patients had arthroscopy to harvest autologous chondrocytes then grown in autologous serum. Chondrocytes were cultured in the presence of the FGF variant and then seeded on the fibrin-hyaluronan matrix. About 4 weeks following biopsy, the patients underwent implantation of the constructs by miniarthrotomy. Three of the eight patients had transient effusion. Clinical performance was measured by Lysholm and IKDC scores, MRI, and the need for secondary surgery. The clinical outcome of a 1-year followup demonstrated increase of clinical scores. The MRI followup showed good filling of the defect with tissue having the imaging appearance of cartilage in all patients. Apart from the transient effusion in three patients we observed no other adverse events during the followup. LEVEL OF EVIDENCE: Level IV, therapeutic study.
Project description:ObjectiveTo assess patient response rates to medical therapies used to treat endometriosis-associated pain.DesignA systematic review with the use of Medline and Embase.SettingNot applicable.Patient(s)Women receiving medical therapy to treat endometriosis.Interventions(s)None.Main outcome measure(s)The proportions of patients who: experienced no reduction in endometriosis-associated pain symptoms; had pain symptoms remaining at the end of the treatment period; had pain recurrence after treatment cessation; experienced an increase or no change in disease score during the study; were satisfied with treatment; and discontinued therapy owing to adverse events or lack of efficacy. The change in pain symptom severity experienced during and after treatment, as measured on the visual analog scale, was also assessed.Result(s)In total, 58 articles describing 125 treatment arms met the inclusion criteria. Data for the response of endometriosis-associated pain symptoms to treatment were presented in only 29 articles. The median proportions of women with no reduction in pain were 11%-19%; at the end of treatment, 5%-59% had pain remaining; and after follow-up, 17%-34% had experienced recurrence of pain symptoms after treatment cessation. After median study durations of 2-24 months, the median discontinuation rates due to adverse events or lack of efficacy were 5%-16%.Conclusion(s)Few studies of medical therapies for endometriosis report outcomes that are relevant to patients, and many women gain only limited or intermittent benefit from treatment.
Project description:p53 has a crucial role in human fertility by regulating the expression of leukemia inhibitory factor (LIF), a secreted cytokine critical for blastocyst implantation. To examine whether TP53 polymorphisms may be involved with in vitro fertilization (IVF) failure and endometriosis (END), we have assessed the associations between TP53 polymorphism in intron 2 (PIN2; G/C, intron 2), PIN3 (one (N, non-duplicated) or two (D, duplicated) repeats of a 16-bp motif, intron 3) and polymorphism in exon 4 (PEX4; C/G, p.P72R, exon 4) in 98 women with END and 115 women with post-IVF failure. In addition, 134 fertile women and 300 women unselected with respect to fertility-related features were assessed. TP53 polymorphisms and haplotypes were identified by amplification refractory mutation system polymerase chain reaction. TP53 PIN3 and PEX4 were associated with both END (P=0.042 and P=0.007, respectively) and IVF (P=0.004 and P=0.009, respectively) when compared with women both selected and unselected for fertility-related features. Haplotypes D-C and N-C were related to higher risk for END (P=0.002, P=0.001, respectively) and failure of IVF (P=0.018 and P=0.002, respectively) when compared with the Fertile group. These results support that specific TP53 haplotypes are associated with an increased risk of END-associated infertility and with post-IVF failure.
Project description:ObjectiveTo study the influence of endometriosis activity on the pregnancy outcomes of patients with recurrent implantation failure (RIF) in in-vitro fertilization/intra-cytoplasmic sperm injection (IVF/ICSI) cycles. The pregnancy outcomes were compared between RIF patients with endometriosis who received treatment at different occasions to explore the appropriate treatment plan for these patients and to optimize the pregnancy-support strategies.DesignAmbispective cohort study.MethodsA total of 330 patients with endometriosis were enrolled from 2008 to 2018 and included 1043 IVF/ICSI cycles. All patients were diagnosed with RIF after IVF/ICSI. Patients were assigned to three subtypes according to different control states of endometriosis, including the untreated, early-treatment, and late-treatment groups. The clinical pregnancy rate, live birth rate, and cumulative live birth rate of endometriosis patients with RIF were the main outcomes; additionally, the fertilization rate, available embryonic rate, and high-quality embryonic rate were also compared.ResultsThe early-treatment and late-treatment groups showed higher cumulative live birth rate than the untreated group (early-treated 43.6% vs. late-treated 46.3% vs. untreated 27.7%, P<0.001), though patients in the two treatment groups had higher rates of adenomyosis and ovarian surgery. The two treatment group showed a better laboratory result than the untreated and especially, the early-treatment group. The untreated group (46.24%) had a lower IVF fertilization rate than the treated group (early-treated [64.40%] and late-treated [60.27%] (P<0.001). In addition, the rates of available embryos and high-quality embryos in the early-treated group were much higher those that in the untreated group (90.30% vs. 85.20%, 76.50% vs. 64.47%). Kaplan-Meier curve showed that patients in the untreated group needed a mean of 23.126 months to achieve one live birth; whereas those in the treated group needed a comparatively shorter duration (early-treated: 18.479 ± 0.882 months and late-treated: 14.183 ± 1.102 months, respectively).ConclusionEndometriosis has a negative influence on IVF/ICSI outcome. The control of endometriosis activity can result in a higher cumulative live birth rate in patients. It is necessary for endometriosis patients to receive medical treatment to achieve a better prognosis especially for those with RIF.
Project description:The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams. The observation that the central clock, and many other peripheral clocks, are fully functional in this model allows the assignment of the implantation phenotype to the clock in ovarian steroidogenic cells and distinguishes it from more general circadian related systemic pathology (e.g., early onset arthropathy, premature aging, ovulation, late onset of puberty, and abnormal estrous cycle). Our ovarian transcriptome analysis reveals that deletion of ovarian Bmal1 disrupts expression of transcripts associated with the circadian machinery and also genes critical for regulation of progesterone production, such as steroidogenic acute regulatory factor (Star). Overall, these data provide a powerful model to probe the interlocking and synergistic network of the circadian clock and reproductive systems.
Project description:ObjectiveThere is growing concern with the strength and stability of the emergency medical services (EMS) workforce with reports of workforce challenges in many communities in the United States. Our objective was to estimate changes in the EMS workforce by evaluating the number of clinicians who enter, stay, and leave.MethodsA 4-year retrospective cohort evaluation of all certified EMS clinicians at the emergency medical technician (EMT) level or higher was conducted for 9 states that require national EMS certification to obtain and maintain EMS licensure. The study spanned 2 recertification cycles (2017-2021) for 2 workforce populations: the certified workforce (all EMS clinicians certified to practice) and the patient care workforce (the subset who reported providing patient care). Descriptive statistics were calculated and classified into 1 of 3 categories: EMS clinicians who entered, stayed in, or left each respective workforce population.ResultsThere were 62,061 certified EMS clinicians in the 9 included states during the study period, and 52,269 reported providing patient care. For the certified workforce, 80%-82% stayed in and 18%-20% entered the workforce. For the patient care workforce, 74%-77% stayed and 29%-30% entered. State-level rates of leaving each workforce ranged from 16% to 19% (certified) and 19% to 33% (patient care). From 2017 to 2020, there was a net growth of both the certified (8.8%) and patient care workforces (7.6%).ConclusionsThis was a comprehensive evaluation of both the certified and patient care EMS workforce dynamics in 9 states. This population-level evaluation serves as the first step for more detailed analyses to better understand workforce dynamics in EMS.
Project description:BackgroundAortic valve calcification (AVC) secondary to renal failure (RF) is an inflammation-regulated process, but its pathogenesis remains unknown. We sought to assess the cellular processes that are involved in the early phases of aortic valve disease using a unique animal model of RF-associated AVC.MethodsAortic valves were obtained from rats that were fed a uremia-inducing diet exclusively for 2, 3, 4, 5, and 6 weeks as well as from controls. Pathological examination of the valves included histological characterization, von Kossa staining, and antigen expression analyses.ResultsAfter 2 weeks, we noted a significant increase in urea and creatinine levels, reflecting RF. RF parameters exacerbated until the Week 5 and plateaued. Whereas no histological changes or calcification was observed in the valves of any study group, macrophage accumulation became apparent as early as 2 weeks after the diet was started and rose after 3 weeks. By western blot, osteoblast markers were expressed after 2 weeks on the diet and decreased after 6 weeks. Collagen 3 was up-regulated after 3 weeks, plateauing at 4 weeks, whereas collagen 1 levels peaked at 2 and 4 weeks. Fibronectin levels increased gradually until Week 5 and decreased at 6 weeks. We observed early activation of the ERK pathway, whereas other pathways remained unchanged.ConclusionsWe concluded that RF induces dramatic changes at the cellular level, including macrophage accumulation, activation of cell signaling pathway and extracellular matrix modification. These changes precede valve calcification and may increase propensity for calcification, and have to be investigated further.
Project description:Aim: The aim of this study was to explore associations of urinary concentrations of bisphenols A (BPA), S (BPS), and F (BPF) and of thiobarbituric acid reactive substances (TBARS) with the risk of endometriosis in women of childbearing age. Methods: This case-control study enrolled 124 women between January 2018 and July 2019: 35 women with endometriosis (cases) and 89 women without endometriosis undergoing abdominal surgery for other reasons (controls). Endometriosis was diagnosed (cases) or ruled out (controls) by laparoscopic inspection of the pelvis and the biopsy of suspected lesions (histological diagnosis). Fasting urine samples were collected before surgery to determine concentrations of BPA, BPS, BPF, and TBARS. Associations of bisphenol and TBARS concentrations with endometriosis risk were explored with multivariate logistic and linear regression analyses. Results: After adjustment for urinary creatinine, age, BMI, parity, and residence, endometriosis risk was increased with each 1 log unit of BPA [OR 1.5; 95%CI 1.0-2.3] and Σbisphenols [OR 1.5; 95%CI 0.9-2.3] but was not associated with the presence of BPS and BPF. Classification of the women by tertiles of exposure revealed statistically significant associations between endometriosis risk and the second tertile of exposure to BPA [OR 3.7; 95%CI 1.3-10.3] and Σbisphenols [OR 5.4; 95%CI 1.9-15.6]. In addition, TBARS concentrations showed a close-to-significant relationship with increased endometriosis risk [OR 1.6; 95%CI 1.0-2.8], and classification by TBARS concentration tertile revealed that the association between endometriosis risk and concentrations of BPA [OR 2.0; 95%CI 1.0-4.1] and Σbisphenols [OR 2.2; 95%CI 1.0-4.6] was only statistically significant for women in the highest TBARS tertile (>4.23 μM). Conclusion: Exposure to bisphenols may increase the risk of endometriosis, and oxidative stress may play a crucial role in this association. Further studies are warranted to verify these findings.