Project description:BACKGROUND: Sacha Inchi (Plukenetia volubilis L., Euphorbiaceae) is a potential oilseed crop because the seeds of this plant are rich in unsaturated fatty acids (FAs). In particular, the fatty acid composition of its seed oil differs markedly in containing large quantities of ?-linolenic acid (18C:3, a kind of ?-3 FAs). However, little is known about the molecular mechanisms responsible for biosynthesis of unsaturated fatty acids in the developing seeds of this species. Transcriptome data are needed to better understand these mechanisms. RESULTS: In this study, de novo transcriptome assembly and gene expression analysis were performed using Illumina sequencing technology. A total of 52.6 million 90-bp paired-end reads were generated from two libraries constructed at the initial stage and fast oil accumulation stage of seed development. These reads were assembled into 70,392 unigenes; 22,179 unigenes showed a 2-fold or greater expression difference between the two libraries. Using this data we identified unigenes that may be involved in de novo FA and triacylglycerol biosynthesis. In particular, a number of unigenes encoding desaturase for formation of unsaturated fatty acids with high expression levels in the fast oil accumulation stage compared with the initial stage of seed development were identified. CONCLUSIONS: This study provides the first comprehensive dataset characterizing Sacha Inchi gene expression at the transcriptional level. These data provide the foundation for further studies on molecular mechanisms underlying oil accumulation and PUFA biosynthesis in Sacha Inchi seeds. Our analyses facilitate understanding of the molecular mechanisms responsible for the high unsaturated fatty acids (especially ?-linolenic acid) accumulation in Sacha Inchi seeds.
Project description:ObjectiveIt is necessary to improve biotech platforms based on in vitro cell tissue culture to support sacha inchi (Plukenetia volubilis L.) research programs and draw on the nutritional value of the high polyunsaturated fatty acid content of its oilseed. Here, we developed a rapid and efficient method for induction and direct in vitro shoot development for this species.ResultsShoots were generated from hypocotyl explants. The highest organogenic response was obtained in woody plant medium supplemented with 1 mg/L thidiazuron and 0.5 mg/L zeatin supplemented with L-glutamine, adenine hemisulfate, and L-arginine. Shoots obtained using this medium were transferred and subcultivated with different concentrations of indole-3-butyric acid and 1-naphthylacetic acid for rooting. For the first time, a histological analysis was performed supporting direct organogenic development in this species. The plantlets obtained were transferred ex vitro with a survival percentage of 80%. The genetic stability of the plants recovered was confirmed by randomly amplified polymorphic DNA analysis. All results indicate that it would be possible to stimulate direct shoot formation from hypocotyls to support the sustainable use of this species.
Project description:Sacha Inchi (Plukenetia volubilis) is a potential woody oil seed plant for producing healthy vegetable oil due to high content of α-linolenic acid in its seeds. In this study, we report the structure of the complete chloroplast genome of P. volubilis using high-throughput next-generation sequencing technology. The circular chloroplast genome is 161,733 bp in size, containing a pair of inverted repeat regions (IR) of 27,382 bp each, which were separated by a large single copy region (LSC) of 88,843 bp and a small single copy region (SSC) of 18,126 bp. The chloroplast genome harbors 135 genes, including 92 protein-coding genes, 35 tRNA genes and 8 rRNA genes. Based on the phylogenetic relationships between the chloroplast genome of P. volubilis and those of the other species, P. volubilis is most closely related to castor bean (Ricinus communis).
Project description:This study examined the changes in metabolites together with the flavor profiles of germinated Sacha inchi seeds during roasting by using gas chromatography. The results indicated that roasting partially increased the browning index, amino acid levels, total phenolic content, and antioxidant capacity, but slightly decreased the levels of reducing sugars. Oxidized and rancid compounds were significantly decreased at a 180 °C roasting temperature. Pyrazine, furan, and pyrrole were Maillard reaction products that were increased at 180 °C of roasting. Roasting at 145 °C for 45 min after germination for 4 days was determined to be the optimal conditions for roasting germinated Sacha inchi seeds, which reduced the off-flavor and burned taste. The roasted germinated Sacha inchi seed contains higher amino acids than raw seed, which could be used as an alternative source for food products and supplements. In addition, the roasted germinated seeds at 4 days were recommended for food applications.
Project description:Sacha Inchi oil (SIO), derived from seeds of Plukenetia volubilis L., is a novel plant source of unsaturated fatty acids, highly regarded for its health benefits. The rich fractions of polyunsaturated fatty acids have shown potential in improving or reducing the impact of hyperglycaemia, hypertension and hyperlipidaemia (3Hs) for both in vivo and preliminary human studies. This study aimed to investigate the effects of SIO supplementation on glycaemic, lipid and blood pressures outcomes of patients with 3Hs. A randomised, double-blind, placebo-controlled human clinical trial was conducted to investigate the effects of SIO supplementation in fifty-four (n = 54) 3Hs patients. Assessments of glycaemic control, blood pressure and lipid profiles were conducted and compared at baseline and week-12 after 3Hs patients were randomised into SIO group (n = 27) (received 1000 mg of SIO soft gel per day) or the placebo group (n = 27) (received 1000 mg of corn oil), with prescribed medications. The compliancy and tolerability of supplementation were assessed concurrently. The SIO group demonstrated lower systolic (-8.6 mmHg, p = 0.004) and diastolic blood pressure (BP) (-7.0 mmHg, p = 0.004), total cholesterol (TC) (-0.6 mmol/L, p = 0.024), low density lipoprotein-cholesterol (LDL-C) (-0.3 mmol/L, p = 0.036) and high density lipoprotein-cholesterol (HDL-C) (p = 0.048) but no effect on glycaemic markers. No clinical adverse events were reported, and the side effects of SIO supplementation were self-limiting and minimal. SIO supplementation showed the potential to alleviate BPs, reduced both TC and LDL-C, and improved HDL-C levels. SIO may offer a simple, novel complementary medicine for the management of 3Hs.
Project description:(1) Background: Beta diversity, i.e., the variance in species compositions across communities, has been pointed out as a main factor for explaining ecosystem functioning. However, few studies have directly tested the effect of crop establishment on beta diversity. We studied beta diversity patterns of arbuscular mycorrhizal (AM) fungal communities associated to sacha inchi (Plukenetia volubilis) after crop establishment. (2) Methods: We molecularly characterized the AM fungal communities associated to roots of sacha inchi in plots after different times of crop establishment, from less than one year to older than three. We analyzed the patterns of alpha, beta, and phylogenetic diversity, and the sources of variation of AM fungal community composition. (3) Results: Beta diversity increased in the older plots, but no temporal effect in alpha or phylogenetic diversity was found. The AM fungal community composition was driven by environmental factors (altitude and soil conditions). A part of this variation could be attributed to differences between sampled locations (expressed as geographic coordinates). Crop age, in turn, affected the composition with no interactions with the environmental conditions or spatial location. (4) Conclusions: These results point out towards a certain recovery of the soil microbiota after sacha inchi establishment. This fact could be attributed to the low-impact management associated to this tropical crop.
Project description:Sacha Inchi (Plukenetia volubilis) oil press-cake (SIPC) represents a new source of proteins of high biological value, with promissory food applications. However, knowledge of these proteins remains limited. In this study, a Sacha Inchi protein concentrate (SPC) was extracted from the SIPC, and proteomic analysis was performed to identify the major alkaline-soluble proteins. Electrophoretic profiles highlighted the efficacy of conditions to extract the major proteins, from which five proteins, not previously reported, were registered. LC-MS/MS analyses produced abundant high-quality fragmentation spectra. Utilizing the Euphorbiaceae database (DB), 226 proteins were identified, with numerous well-assigned spectra remaining unidentified. The PEAKS Studio software generated high quality de novo peptides. Gene ontology (GO) classification allowed the identification of sequenced proteins associated with biological processes, molecular functions, and cellular components. The main alkali-soluble proteins from SPC were characterized by the derived functional analysis like seed storage, defense-related, and carbohydrate and lipid metabolism-related proteins. These results contribute to the information of the emerging proteomic studies on Sacha Inchi.
Project description:The development of ω-3 fatty acid-rich vegetable oils is essential to enrich the production of functional foods. Sacha Inchi (Plukenetia volubilis L.) is a unique oilseed crop with much potential. Its seeds contain rich polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3). Endoplasmic reticulum -located ω-6 and ω-3 fatty acid desaturases (FAD) are responsible for the biosynthesis of LA and ALA, respectively, in plant seeds. Here, we isolated two full-length FAD genes from Sacha Inchi, named PvFAD2 and PvFAD3, which encoded predicted amino acid residues of 384 and 379 in protein, respectively. Protein sequence and subcellular localization analysis revealed that they were located in the endoplasmic reticulum (ER). Heterologous expression in Saccharomyces cerevisiae confirmed that PvFAD2 and PvFAD3 could catalyze LA and ALA synthesis, respectively. The stability and catalytic efficiency of the PvFAD3 protein may be closely related to temperature. In transgenic tobacco, using seed-specific expression promoters, PvFAD2 and PvFAD3 significantly promotes the production of LA (from 68% to 70.5%) and ALA (from 0.7% to 3.1%) in seed oil. These results show that PvFAD2 and PvFAD3 do, indeed, function as crucial enzymes for PUFAs biosynthesis, and provide a key gene source for the sustainable production of lipids with tailored fatty acid compositions via genetic engineering in other oil crops.
Project description:Sacha inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds; however, it is prone to oxidation. This work aimed to obtain SIO microcapsules using conventional and ultrasound probe homogenization and using spray- and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. The application of ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and interfacial tension of emulsions. The microcapsules obtained by both drying technologies had low moisture (1.64-1.76) and water activity (0.03-0.11) values. Spray-dried microcapsules showed higher encapsulation efficiency (69.90-70.18%) compared to freeze-dried ones (60.02-60.16%). Thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf-life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray-drying technology is positioned as a more economical alternative to freeze-drying.
Project description:BackgroundSacha Inchi (Plukenetia volubilis L.), which belongs to the Euphorbiaceae, has been considered a new potential oil crop because of its high content of polyunsaturated fatty acids in its seed oil. The seed oil especially contains high amounts of α-linolenic acid (ALA), which is useful for the prevention of various diseases. However, little is known about the genetic information and genome sequence of Sacha Inchi, which has largely hindered functional genomics and molecular breeding studies.ResultsIn this study, a de novo transcriptome assembly based on transcripts sequenced in eight major organs, including roots, stems, shoot apexes, mature leaves, male flowers, female flowers, fruits, and seeds of Sacha Inchi was performed, resulting in a set of 124,750 non-redundant putative transcripts having an average length of 851 bp and an N50 value of 1909 bp. Organ-specific unigenes analysis revealed that the most organ-specific transcripts are found in female flowers (2244 unigenes), whereas a relatively small amount of unigenes are detected to be expressed specifically in other organs with the least in stems (24 unigenes). A total of 42,987 simple sequence repeats (SSRs) were detected, which will contribute to the marker assisted selection breeding of Sacha Inchi. We analyzed expression of genes related to the α-linolenic acid metabolism based on the de novo assembly and annotation transcriptome in Sacha Inchi. It appears that Sacha Inchi accumulates high level of ALA in seeds by strong expression of biosynthesis-related genes and weak expression of degradation-related genes. In particular, the up-regulation of FAD3 and FAD7 is consistent with high level of ALA in seeds of Sacha Inchi compared with in other organs. Meanwhile, several transcription factors (ABI3, LEC1 and FUS3) may regulate key genes involved in oil accumulation in seeds of Sacha Inchi.ConclusionsThe transcriptome of major organs of Sacha Inchi has been sequenced and de novo assembled, which will expand the genetic information for functional genomic studies of Sacha Inchi. In addition, the identification of candidate genes involved in ALA metabolism will provide useful resources for the genetic improvement of Sacha Inchi and the metabolic engineering of ALA biosynthesis in other plants.