Project description:The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes.
Project description:BackgroundSalt stress is one of the major environmental factors affecting plant growth and productivity. BRI1-EMS suppressor 1/brassinazole-resistant 1 ((BES1/BZR1) plays an important role in responding to abiotic stress in plants. Although the impacts of BES1/BZR1 on plant growth and resistance have been documented, the potential mechanisms are not fully elucidated in Betula platyphylla. This work contributes to the understanding of how BES1/BZR1 promotes stress tolerance in woody plants.ResultsSix BES1/BZR1 family members were identified from Betula platyphylla. Cis-element analysis showed that the promoters of six genes were rich in ABA-responsive element (ABRE), MYB and MBS cis-acting elements, which are reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that BpBZR1-6 (BPChr10G06000) could be induced by salt stress, ABA and BRs. BpBZR1-6 was localized in the nucleus and had transactivation activity. Ectopic expression of BpBZR1-6 enhanced Arabidopsis tolerance and decreased abscisic acid (ABA) sensitivity under salt treatment. Specifically, the seed germination rate, root length, fresh weight and chlorophyll content were significantly higher in BpBZR1-6-overexpressing (OE) transgenic plants than in wild-type (WT) plants after salt stress (P < 0.05). Additionally, BpBZR1-6 overexpression showed enhanced the reactive oxygen species (ROS) scavenging capability under salt stress, including increasing the activities of antioxidant enzyme, resulting in a decrease in O2- and H2O2 accumulation, and reducing malondialdehyde (MDA) content. Meanwhile, the expression levels of six antioxidant enzyme genes were higher in OE plants than in WT plants after stress.ConclusionBpBZR1-6 overexpression enhanced the salt tolerance of transgenic plants by modulating antioxidant enzyme gene expression and ROS scavenging, which may provide underlying strategy for breeding of salt-tolerant plants.
Project description:The MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which play an indispensable role in regulating the response of plants to stress. In this study, a new 1R-MYB TF gene was obtained from Fragaria vesca (a diploid strawberry) by cloning technology and given a new name, FvMYB114. According to the subcellular localization results, FvMYB114 protein was a nuclear localization protein. Overexpression of FvMYB114 greatly enhanced the adaptability and tolerance of Arabidopsis thaliana to salt and low temperature. Under salt and cold stress, the transgenic plants had greater proline and chlorophyll contents and higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild-type (WT) and unloaded-line (UL) A. thaliana. However, malondialdehyde (MDA) was higher in the WT and UL lines. These results suggested that FvMYB114 may be involved in regulating the response of A. thaliana to salt stress and cold stress. FvMYB114 can also promote the expression of genes, such as the genes AtSOS1/3, AtNHX1 and AtLEA3 related to salt stress and the genes AtCCA1, AtCOR4 and AtCBF1/3 related to cold stress, further improving the tolerance of transgenic plants to salt and cold stress.
Project description:'Beta' (Vitisriparia × V. labrusca) is a vine fruit tree of the genus Vitis which is a cross between American and riparian grapes. In the current situation of grape production in northern regions, cold, drought, and salinity are important bottlenecks restricting its development, while some grape rootstocks with excellent traits show the disadvantage of poor resilience. 'Beta' (Vitis riparia × V. labrusca), one of the most extensively utilized rootstocks in viticulture, has demonstrated remarkable resilience to adverse conditions. However, the mechanisms by which 'Beta' rootstocks resist abiotic stresses are unknown and need to be further investigated. In this study, we successfully isolated and cloned a novel MYB transcription factor, VhMYB60, from the 'Beta' grapevine. This factor spans 972 base pairs and encodes a protein comprising 323 amino acids. Subcellular localization studies revealed that VhMYB60 is predominantly expressed within the nucleus. Furthermore, tissue-specific expression analysis demonstrated that VhMYB60 is more abundantly expressed in the mature leaves and roots of the grape plant. Further studies showed that salt and cold stress notably increased VhMYB60 gene expression in both mature leaves and grape roots. Compared with the control, Arabidopsis thaliana (Arabidopsis) plants molecularly modified to overexpress VhMYB60 exhibited enhanced salt and cold resistance and improved survival rates. Moreover, notable changes were detected in chlorophyll, malondialdehyde (MDA), proline, peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) levels. Concurrently, the expression levels of structural genes that are positively correlated with resistance to adversity stress were markedly elevated in Arabidopsis plants that overexpress VhMYB60. Consequently, VhMYB60 may serve as a pivotal transcription factor in the regulation of 'Beta' resistance.
Project description:Being an invasive plant, Polygonum cuspidatum is highly resilient and can survive in unfavorable environments for long periods; however, its molecular mechanisms associated with such environmental resistance are largely unknown. In this study, a WRKY transcription factor (TF) gene, PcWRKY11, was identified from P. cuspidatum by analyzing methyl jasmonate (MeJA)-treated transcriptome data. It showed a high degree of homology with WRKY11 from Arabidopsis thaliana, containing a WRKY domain and a zinc finger structure and II-d WRKY characteristic domains of HARF, a calmodulin-binding domain (C-motif), and a putative nuclear localization signal (NLS) through sequence alignment and functional element mining. qPCR analysis showed that the expression of PcWRKY11 can be induced by NaCl, osmotic stress, and UV-C. In this study, we also found that overexpression of PcWRKY11 in A. thaliana could significantly increase salt tolerance. To explore its possible molecular mechanism, further investigations showed that compared with the wild type (WT), under salt stress, the transgenic plants showed a lower malondialdehyde (MDA) content, higher expression of ascorbate peroxidase (APX) and superoxide dismutase (SOD), and higher enzyme activity of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Moreover, the transgenic plants also showed higher expression of Δ1-pyrroline-5-carboxylate synthase (AtP5CS), and higher contents of proline and soluble sugar. Taken together, these results indicate that PcWRKY11 may have a positive role in plants' adaptation to salinity conditions by reducing reactive oxygen species (ROS) levels and increasing osmosis substance synthesis.
Project description:In the natural environment, plants often face unfavorable factors such as drought, cold, and freezing, which affect their growth and yield. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family is widely involved in plant responses to biotic and abiotic stresses. In this study, Malus baccata (L.) Borkh was used as the research material, and a gene MbMYB4 of the MYB family was cloned from it. The open reading frame (ORF) of MbMYB4 was found to be 762 bp, encoding 253 amino acids; sequence alignment results and predictions of the protein structure indicated that the MbMYB4 protein contained the conserved MYB domain. Subcellular localization showed that MbMYB4 was localized in the nucleus. In addition, the use of quantitative real-time PCR (qPCR) technology found that the expression of MbMYB4 was enriched in the young leaf and root, and it was highly affected by cold and drought treatments in M. baccata seedlings. When MbMYB4 was introduced into Arabidopsis thaliana, it greatly increased the cold and drought tolerance in the transgenic plant. Under cold and drought stresses, the proline and chlorophyll content, and peroxidase (POD) and catalase (CAT) activities of transgenic A. thaliana increased significantly, and the content of malondialdehyde (MDA) and the relative conductivity decreased significantly, indicating that the plasma membrane damage of transgenic A. thaliana was lesser. Therefore, the overexpression of the MbMYB4 gene in A. thaliana can enhance the tolerance of transgenic plants to cold and drought stresses.
Project description:In viticulture, the highly resistant rootstock 'Beta' is widely used in Chinese grape production to avoid the effects of soil salinization and drought on grape growth. However, the mechanism of high resistance to abiotic stress in the 'Beta' rootstock is not clear. In this study, we demonstrated that VhMYB2 as a transcription factor made a significant contribution to salinity and drought stress, which was isolated from the 'Beta' rootstock. The coding sequence of the VhMYB2 gene was 858 bp, encoding 285 amino acids. The subcellular localization of VhMYB2 was located in the nucleus of tobacco epidermal cells. Moreover, RT-qPCR found that VhMYB2 was predominantly expressed in the mature leaf and root of the grape. Under salinity and drought stress, overexpressing VhMYB2 showed a higher resistant phenotype and survival rates in A. thaliana while the transgenic lines had a survival advantage by measuring the contents of proline, chlorophyll, and MDA, and activities of POD, SOD, and CAT, and expression levels of related stress response genes. The results reveal that VhMYB2 may be an important transcription factor regulating 'Beta' resistance in response to abiotic stress.
Project description:BackgroundSalt stress significantly influences plant growth and reduces crop yield. It is highly anticipated to develop salt-tolerant crops with salt tolerance genes and transgenic technology. Hence, it is critical to identify salt tolerance genes that can be used to improve crop salt tolerance.ResultsWe report that the transcription elongation factor suppressor of Ty 4-2 (SPT4-2) is a positive modulator of salt tolerance in Arabidopsis thaliana. AtSPT4-2 expression is induced by salt stress. Knockout mutants of AtSPT4-2 display a salt-sensitive phenotype, whereas AtSPT4-2 overexpression lines exhibit enhanced salt tolerance. Comparative transcriptomic analyses revealed that AtSPT4-2 may orchestrate the expression of genes associated with salt tolerance, including stress-responsive markers, protein kinases and phosphatases, salt-responsive transcription factors and those maintaining ion homeostasis, suggesting that AtSPT4-2 improves salt tolerance mainly by maintaining ion homeostasis and enhancing stress tolerance.ConclusionsAtSPT4-2 positively modulates salt tolerance by maintaining ion homeostasis and regulating stress-responsive genes and serves as a candidate for the improvement of crop salt tolerance.
Project description:The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.