Project description:A novel method of photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides has been developed. Although the arylation reactions with triarylbismuthines are usually catalyzed by transition-metal complexes, the present arylation of diaryl diselenides with triarylbismuthines proceeds upon photoirradiation in the absence of transition-metal catalysts. A variety of unsymmetrical diaryl selenides can be conveniently prepared by using this arylation method.
Project description:Indole dearomatization is an important strategy to access indolines: a motif present in a variety of natural products and biologically active molecules. Herein, a method for transition-metal catalyzed regioselective dearomative arylboration of indoles to generate diverse indolines is presented. The method accomplishes intermolecular dearomatization of simple indoles through a migratory insertion pathway on substrates that lack activating or directing groups on the C2- or C3-positions. Synthetically useful C2- and C3-borylated indolines can be accessed through a simple change in N-protecting group in high regio- and diastereoselectivities (up to >40:1 rr and >40:1 dr) from readily available starting materials. Additionally, the origin of regioselectivity was explored experimentally and computationally to uncover the remarkable interplay between carbonyl orientation of the N-protecting group on indole, electronics of the C2-C3 π-bond, and sterics. The method enabled the first enantioselective synthesis of (-)-azamedicarpin.
Project description:We herein report a ligand-free Ir-catalyzed C-H borylation of N-acyl protected indoles. This simple protocol could tolerate a variety of functional groups, affording C3 borylated indoles in good yields with excellent regioselectivities. We also demonstrated that the current method is amenable to gram-scale borylation and the C-B bonds could be easily converted to C-C and C-heteroatom bonds.
Project description:The combination of nucleophilic nitrenoids and π-acid catalysis has emerged as a powerful tool in heterocycle synthesis. Accessing more varied heterocycle-substitution patterns by maintaining the same reaction pathways across different alkynes remains a challenge. Here we show that Au(I) catalysis of isoxazole-based nitrenoids with alkynyl thioethers provides controlled access to (3 + 2) annulation by a regioselective addition β to the sulfenyl group. The reaction with isoxazole-containing nitrenoids delivers sulfenylated pyrroles and indoles as single regioisomers bearing useful functional groups and structural variety.
Project description:An efficient synthesis of ketimines was achieved through a regioselective Hg(I)-catalyzed hydroamination of terminal acetylenes in the presence of anilines. The Pd(II)-catalyzed cyclization of these imines into the 2-substituted indoles was satisfactorily carried out by a C-H activation. In a single-step approach, a variety of 2-substituted indoles were also generated via a Hg(I)/Pd(II)-catalyzed, one-pot, two-step process, starting from anilines and terminal acetylenes. The arylacetylenes proved to be more effective than the alkyl derivatives.
Project description:α,β-Unsaturated O-pivaloyl oximes are coupled to alkenes by Rh(III) catalysis to afford substituted pyridines. The reaction with activated alkenes is exceptionally regioselective and high-yielding. Mechanistic studies suggest that heterocycle formation proceeds via reversible C-H activation, alkene insertion, and a C-N bond formation/N-O bond cleavage process.
Project description:A ruthenium(ii)-catalyzed regioselective direct diamidation of 3-carbonylindoles at the C4- and C5-positions using various dioxazolones is described. This novel protocol allows for the effective installation of two amide groups on the benzene ring in indole. A remarkably broad substrate scope, excellent functional group tolerance, and mild reaction conditions are notable features of this protocol. Further explorations reveal that benzo[b]thiophene-3-carboxaldehyde is a viable substrate and affords its corresponding diamidation products. The diamido indoles are further converted into various functionalized products and used as sensors for metal ion detection. Density functional theory studies are also conducted to propose a reaction mechanism and provide a detailed understanding of the regioselectivity observed in the reaction.
Project description:The bismuth-catalyzed oxidative condensation of aldehydes with 2-aminobenzamide under aerobic conditions is reported using ethanol as the solvent. Good to excellent isolated yields (68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions with excellent functional group tolerance. The quinazolinones were further functionalized to afford N-allylated quinazolinones, 2-aminopyridine derivatives, and annulated polyheterocyclic compounds via transition-metal catalyzed reactions.
Project description:In this study, the reactivity of organochalcogen compounds toward a representative alkyl-lead bond compound under light was investigated in detail. Under light irradiation, the Cy-Pb bond of Cy6Pb2 (Cy = cyclohexyl) undergoes homolytic cleavage to generate a cyclohexyl radical (Cy•). This radical can be successfully captured by diphenyl diselenide, which exhibits excellent carbon-radical-capturing ability. In the case of (PhS)2 and (PhTe)2, the yields of the corresponding cyclohexyl sulfides and tellurides were lower than that of (PhSe)2. This probably occurred due to the low carbon-radical-capturing ability of (PhS)2 and the high photosensitivity of the cyclohexyl-tellurium bond.
Project description:Fully loaded: Readily accessible and shelf-stable 1-bismuth(III) acetylides react rapidly and regiospecifically with organic azides in the presence of a copper(I) catalyst. The reaction tolerates many functional groups and gives excellent yields of the previously unreported 5-bismuth triazolides. This uniquely reactive intermediate is functionalized under mild reaction conditions to give fully substituted 1,2,3-triazoles.