Project description:Invasive fungal infections caused by C. albicans are becoming increasingly serious and there is an urgent need for exploring new antifungal drugs. In the present work, a series of new azole derivatives containing a 1,2,3-triazole moiety have been prepared, and in vitro antifungal activity have been evaluated. The results revealed that most compounds showed excellent antifungal activity against C. albicans SC5314 and drug-resistant SC5314-FR. In particular, compounds 4h, 4j, 4l, 4s and 4w exhibited better antifungal activity than FLC. The preliminary mechanism study indicated that 4s could damage the integrity of the cell structure, increase the permeability of the cell membrane, and cause the leakage of cell contents of C. albicans. The molecular docking study indicated that 4s showed an obvious binding site with the target CYP51 (PDB ID: 5TL8). Therefore, 4s could be considered as a new antifungal agent targeting CYP51 for further study.
Project description:?-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition ("click chemistry"). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the ?-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en.
Project description:To this day, the quest to find new drugs is still a challenge due to the growing demands of patients suffering from chronic inflammatory diseases and the need for the individualization of therapy. The aim of this research was to synthesize new 1,2,4-triazole derivatives containing propanoic acid moiety and to investigate their anti-inflammatory, antibacterial and anthelmintic activity. Compounds 3a-3g were obtained in reactions of amidrazones 1a-1g with succinic anhydride. Several analyses of proton and carbon nuclear magnetic resonance (1H NMR, 13C NMR, respectively), as well as high-resolution mass spectra (HRMS), confirmed the structures of 1,2,4-triazole derivatives 3a-3g. Toxicity, antiproliferative activity and influence on cytokine release (TNF-α: Tumor Necrosis Factor-α, IL-6: Interleukin-6, IFN-γ: Interferon-γ, and IL-10: Interleukin-10) of the compounds 3a-3g were evaluated in peripheral blood mononuclear cells culture. Moreover, mitogen-stimulated cell culture was used for biological activity tests. The antimicrobial and anthelmintic activity of derivatives 3a-3g were studied against Gram-positive and Gram-negative bacterial strains and Rhabditis sp. culture. Despite the lack of toxicity, compounds 3a-3g significantly reduced the level of TNF-α. Derivatives 3a, 3c and 3e also decreased the release of IFN-γ. Taking all of the results into consideration, compounds 3a, 3c and 3e show the most beneficial anti-inflammatory effects.
Project description:A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure-activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.
Project description:Here, we investigated the reaction of 1,3-dipolar cycloaddition of 1,3-diazido-2-nitro-2- azapropane (DANP) to propargyl alcohol over a copper-based catalyst and identified the optimum reaction conditions that enable the synthesis of 2-nitro-1,3-bis(4,4′-dihydroxymethyl)-1,2,3-triazolyl-2-azapropane (1) in more than 84% yield. The reaction between DANP, 1,5-diazido-3-nitrazapentane, and phenylacetylene produced the respective 1,2,3-triazole derivatives in 83% and 71% yields, respectively. The structures of the resultant compounds were validated by infrared and NMR spectroscopies and elemental analysis. The structure of 1 was proved by single-crystal X-ray diffraction. This study demonstrated that 1 exhibits a dose-dependent antiarrhythmic activity towards calcium-chloride-induced arrhythmia and refers to Class III: moderately hazardous substances.
Project description:We report herein the design and synthesis of a series of 11 novel tacrine-1,2,3-triazole derivatives via a Cu(i)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. The newly synthesized compounds were evaluated for their inhibition activity against Electrophorus electricus acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) as potential drug targets for Alzheimer's disease (AD). Among the designed compounds, compound 8a2 exhibited potent inhibition against AChE and BChE with IC50 values of 4.89 μM and 3.61 μM, respectively. Further structure-activity relationship (SAR) and molecular modeling studies may provide valuable insights into the design of better tacrine-triazole analogues with potential therapeutic applications for AD.
Project description:A series of 1,4-disubstituted 1,2,3-triazoles having 10-demethoxy-10-N-methylaminocolchicine core were designed and synthesized via the Cu(I)-catalyzed "click" reaction and screened for their in vitro cytotoxicity against four cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and one noncancerous cell line (BALB/3T3). Indexes of resistance (RI) and selectivity (SI) were also determined to assess the potential of the analogues to break drug resistance of the LoVo/DX cells and to verify their selectivity toward killing cancer cells over normal cells. The compounds with an ester or amide moiety in the fourth position of 1,2,3-triazole of 10-N-methylaminocolchicine turned out to have the greatest therapeutic potential (low IC50 values and favorable SI values), much better than that of unmodified colchicine or doxorubicin and cisplatin. Thus, they make a valuable clue for the further search for a drug having a colchicine scaffold.
Project description:Plant diseases caused by pathogenic fungi or oomycetes seriously affect crop growth and the quality and yield of products. A series of novel 1,2,4-triazole derivatives containing carboxamide fragments based on amide fragments widely used in fungicides and the commercialized mefentrifluconazole were designed and synthesized. Their antifungal activities were evaluated against seven kinds of phytopathogenic fungi/oomycete. Results showed that most compounds had similar or better antifungal activities compared to mefentrifluconazole's inhibitory activity against Physalospora piricola, especially compound 6h (92%), which possessed outstanding activity. Compound 6h (EC50 = 13.095 μg/mL) showed a better effect than that of mefentrifluconazole (EC50 = 39.516 μg/mL). Compound 5j (90%) displayed outstanding anti-oomycete activity against Phytophthora capsici, with an EC50 value of 17.362 μg/mL, far superior to that of mefentrifluconazole (EC50 = 75.433 μg/mL). The result of molecular docking showed that compounds 5j and 6h possessed a stronger affinity for 14α-demethylase (CYP51). This study provides a new approach to expanding the fungicidal spectrum of 1,2,4-triazole derivatives.
Project description:Novel 1,2,3-triazole-tethered 9-bromonoscapine derivatives were synthesized by the propargylation of N-nornoscapine followed by Huisgen's 1,3-dipolar cycloaddition of the terminal alkynes with different azides. Cytotoxicity of the products was studied by MTT assay against the MCF-7 breast cancer cell line. Most of the compounds revealed a better cytotoxicity than N-nornoscapine and 9-bromonornoscapine as the parent compounds. Among the synthesized compounds, those with a hydroxylated aliphatic side chain (5p, 5q, and 5r) showed the highest activities (IC50s: 47.2, 37.9, and 32.3 μg/mL, respectively). Molecular docking studies showed that these compounds also had the highest docking scores and effective interactions with binding sites equal to -8.074, -7.425 and -7.820 kcal/mol, respectively.
Project description:Cystobactamids belong to the group of arene-based oligoamides that effectively inhibit bacterial type IIa topoisomerases. Cystobactamid 861-2 is the most active member of these antibiotics. Most amide bonds present in the cystobactamids link benzoic acids with anilines and it was found that some of these amide bonds undergo chemical and enzymatic hydrolysis, especially the one linking ring C with ring D. This work reports on the chemical synthesis and biological evaluation of thirteen new cystobactamids that still contain the methoxyaspartate hinge. However, we exchanged selected amide bonds either by the urea or the triazole groups and modified ring A in the latter case. While hydrolytic stability could be improved with these structural substitutes, the high antibacterial potency of cystobactamid 861-2 could only be preserved in selected cases. This includes derivatives, in which the urea group is positioned between rings A and B and where the triazole is found between rings C and D.