Project description:Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation.
Project description:In laser powder bed fusion (LPBF) additive manufacturing, the melt pool (MP) characteristics are key indicators for process and part defects. For example, the laser scan location on the build plate can slightly change the MP size and shape due to the f-θ optics of the printer. The laser scan parameters can cause variations in MP signatures that may indicate lack-of-fusion and keyhole regimes. However, the effects of these process parameters on MP monitoring (MPM) signatures and part properties are not yet fully understood, especially during a multilayer big-part printing. In this study, our objective is to comprehensively evaluate the dynamical changes of MP signatures (location, intensity, size, and shape) under realistic printing scenarios-printing multilayer objects at different build plate locations with various print process settings. To accomplish this, we developed a coaxial high-speed camera-based MPM system for a commercial LPBF printer (EOS M290), to capture MP images continuously throughout a multilayer part. From our experimental data and results, we find that the MP image position on the camera sensor is not stationary as reported in the literature and is partly subjected to scan location. Its correlations to process deviation or part defect need to be determined. Also, the MP image profile can significantly reflect the changes in print process conditions. The developed system and analysis method can be used to establish a comprehensive profile of MP image signatures for online process diagnosis and part properties prediction, thus ensuring quality assurance and control in LPBF.
Project description:Ejecta with a size much larger than the mean particle size of feedstock powder have been observed in powder bed fusion additive manufacturing, both during post-process sieving and embedded within built components. However, their origin has not been adequately explained. Here, we test a hypothesis on the origin of large (much larger than the mass-median-diameter of feedstock powder) ejecta-that, in part, they result from stochastic, inelastic collisions of ejecta and coalescence of partially-sintered agglomerates. The hypothesis is tested using direct observation of ejecta behavior, via high-speed imaging, to identify interactions between ejecta and consequences on melt pool formation. We show that stochastic collisions occur both between particles which are nearly-simultaneously expelled from the laser interaction zone and between particles ejected from distant locations. Ejecta are also shown to perturb melt pool geometry, which is argued to be a potential cause of lack-of-fusion flaws.
Project description:Laser powder bed fusion (L-PBF) of copper alloys with high copper content is difficult due to the high infrared reflectivity and thermal conductivity of these alloys. In this study a simple and scalable method for coating copper powder with tin and nickel is presented, and suggested as an alloying strategy for such alloys. The coated powders were processed in a commercial L-PBF-machine at various scanning speeds. The samples made from coated powders show a lower amount of porosity compared to samples made from in-situ alloyed powders of similar composition.
Project description:Research on Laser Powder Bed Fusion (L-PBF) of polymer powder feedstocks has raised over the last decade due to the increased utilization of the fabricated parts in aerospace, automotive, electronics, and healthcare applications. A total of 600 Science Citation Indexed articles were published on the topic of L-PBF of polymer powder feedstocks in the last decade, being cited more than 10,000 times leading to an h-index of 46. This study statistically evaluates the 100 most cited articles to extract reported material, process, and as-built part properties to analyze the research trends. PA12, PEEK, and TPU are the most employed polymer powder feedstocks, while size, flowability, and thermal behavior are the standardly reported material properties. Likewise, process properties such as laser power, scanning speed, hatch spacing, powder layer thickness, volumetric energy density, and areal energy density are extracted and evaluated. In addition, material and process properties of the as-built parts such as tensile test, flexural test, and volumetric porosity contents are analyzed. The incorporation of additives is found to be an effective route to enhance mechanical and functional properties. Carbon-based additives are typically employed in applications where mechanical properties are essential. Carbon fibers, Ca-phosphates, and SiO2 are the most reported additives in the evaluated SCI-expanded articles for L-PBF of polymer powder feedstocks. A comprehensive data matrix is extracted from the evaluated SCI-index publications, and a principal component analysis (PCA) is performed to explore correlations between reported material, process, and as-built parts.
Project description:Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.
Project description:In this study, a set of 316 L stainless steel test specimens was additively manufactured by laser-based Powder Bed Fusion. The process parameters were varied for each specimen in terms of laser scan speed and laser power. The objective was to use a narrow band of parameters well inside the process window, demonstrating detailed parameter engineering for specialized additive manufacturing cases. The process variation was monitored using Optical Tomography to capture light emissions from the layer surfaces. Process emission values were stored in a statistical form. Micrographs were prepared and analyzed for defects using optical microscopy and image manipulation. The results of two data sources were compared to find correlations between lack of fusion, porosity, and layer-based energy emissions. A data comparison of Optical Tomography data and micrograph analyses shows that Optical Tomography can partially be used independently to develop new process parameters. The data show that the number of critical defects increases when the average Optical Tomography grey value passes a certain threshold. This finding can contribute to accelerating manufacturing parameter development and help meet the industrial need for agile component-specific parameter development.
Project description:Laser powder bed fusion offers many advantages over conventional manufacturing methods, such as the integration of multiple parts that can result in significant weight-savings. The increased design freedom that layer-wise manufacture allows has also been seen to enhance component performance at little or no added cost. For such benefits to be realized, however, the material quality must first be assured. Laser ultrasonic testing is a noncontact inspection technique that has been proposed as suitable for in situ monitoring of metal additive manufacturing processes. This article explores the current capability of this technique to detect manufactured, subsurface defects in Ti-6Al-4V samples, ex situ. The results are compared with x-ray computed tomography reconstructions and focus variation microscopy. Although laser ultrasound has been used to identify material discontinuities, further work is required before this technique could be implemented in situ.
Project description:A hybrid laser composed of infrared and blue laser is applied in fabricating TiB2/AlSi7Mg composites on AlSi7Mg substrate by LPBF. The effect on formability, molten pool morphology, molten pool size and microstructure under infrared, blue and hybrid laser were compared. It was confirmed that hybrid laser can make up for the unbalanced energy distribution of infrared laser and the low energy density of blue laser. The increased energy input improves the molten pool size and cellular dendrites size. Therefore, the hybrid laser can improve the formability and forming stability in the LPBF process of low absorption rate alloys.
Project description:The robustness of superhydrophobic objects conflicts with both the inevitable introduction of fragile micro/nanoscale surfaces and three-dimensional (3D) complex structures. The popular metal 3D printing technology can manufacture robust metal 3D complex components, but the hydrophily and mass surface defects restrict its diverse application. Herein, we proposed a strategy that takes the inherent ridges and grooves' surface defects from laser powder bed fusion additive manufacturing (LPBF-AM), a metal 3D printing process, as storage spaces for hydrophobic silica (HS) nanoparticles to obtain superhydrophobic capacity and superior robustness. The HS nanoparticles stored in the grooves among the laser-melted tracks serve as the hydrophobic guests, while the ridges' metal network provides the mechanical strength, leading to robust superhydrophobic objects with desired 3D structures. Moreover, HS nanoparticles coated on the LPBF-AM-printed surface can inhibit corrosion behavior caused by surface defects. It was found that LPBF-AM-printed objects with HS nanoparticles retained superior hydrophobicity after 150 abrasion cycles (~12.5 KPa) or 50 cycles (~37.5 KPa). Furthermore, LPBF-AM-printed ships with superhydrophobic coating maintained great water repellency even after 10,000 cycles of seawater swashing, preventing dynamic corrosion upon surfaces. Our proposed strategy, therefore, provides a low-cost, highly efficient, and robust superhydrophobic coating, which is applicable to metal 3D architectures toward corrosion-resistant requirements.