Project description:The effect of osmotic shock, enzymatic incubation, pulsed electric field, and high shear homogenization on the release of water-soluble proteins and carbohydrates from the green alga Ulva lactuca was investigated in this screening study. For osmotic shock, both temperature and incubation time had a significant influence on the release with an optimum at 30 °C for 24 h of incubation. For enzymatic incubation, pectinase demonstrated being the most promising enzyme for both protein and carbohydrate release. Pulsed electric field treatment was most optimal at an electric field strength of 7.5 kV cm-1 with 0.05 ms pulses and a specific energy input relative to the released protein as low as 6.6 kWh kgprot-1. Regarding literature, this study reported the highest protein (~ 39%) and carbohydrate (~ 51%) yields of the four technologies using high shear homogenization. Additionally, an energy reduction up to 86% was achieved by applying a novel two-phase (macrostructure size reduction and cell disintegration) technique.
Project description:The survival of wetland plant species largely relies on physiological adaptations essential for submergence and desiccation. Intertidal seaweeds, unlike terrestrial plants, have unique adaptations to submergence and can also sustain desiccation arising from tidal rhythms. This study determined the differential metabolic regulations in the inter-tidal seaweed species Ulva lactuca against the submergence and desiccation. During desiccation, the relative water content of the algal thalli declined with concomitant increase in reactive oxygen species (ROS) and lipid peroxidation. Nevertheless, the trends reversed during recovery on re-submergence and attained homeostasis. Metabolite profiling of U. lactuca revealed desiccation induced balance in energy reserve utilization by adjusting carbohydrate metabolism and switch over to ammonia metabolism. Upon re-submergence, thalli showed an increase in fermentative metabolites, pyruvate-alanine conversion, and the GABA shunt. Prolonged submergence induced substrate level phosphorylation mediated sugar biosynthesis while continuing the alternative carbon flux through fermentative metabolism, an increase in osmoprotectants glycine and betaine, sulfur bearing compounds cysteine and hypotaurine, and phenolic compound coniferaldehyde. The determined metabolic regulations in U. lactuca for submergence tolerance provide insights into potential evolutionarily conserved protective mechanisms across the green lineage and also highlights the possible role of sulfur oxoforms as strong free radical scavengers.
Project description:The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 μg·L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 μg·L-1, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 μg·L-1). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.
Project description:Research on green production methods for metal oxide nanoparticles (NPs) is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO) nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.
Project description:Ulva meridionalis, a green macroalgae, is one of the causal species for green tides in Japan and spread into the coast of China. During this research, we sequenced the complete mitochondrial genome of U. meridionalis. The mitogenome is 62,887 bp in length, including 28 encoding genes and 29 tRNA genes. Compared with the Ulva species from mitogenome, the gene order and organization of this mitogenome are similar to most of other determined Ulva mitogenomes, with the nucleotide base composition of A 33.6%, T 32.2%, C 16.2%, and G 18.0%. Phylogenetic analysis shows U. meridionalis is closely related to Ulva flexuosa.
Project description:The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg-1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L-1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg-1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.
Project description:Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.