Project description:The growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm-1). The incorporation of anionic cellulose nanofibrils (TOCNF) enhanced the spinnability and the porous morphology of the carbon microfibers, making them suitable platforms for electrochemical double layer capacitance (EDLC). The increased loading of LCNF in the spinning dope resulted in carbon microfibers of enhanced carbon yield and conductivity. Meanwhile, TOCNF influenced the pore evolution and specific surface area after carbonization, which significantly improved the electrochemical double layer capacitance. When the carbon microfibers were directly applied as fiber-shaped supercapacitors (25 F cm-3), they displayed a remarkably long-term electrochemical stability (>93% of the initial capacitance after 10 000 cycles). Solid-state symmetric fiber supercapacitors were assembled using a PVA/H2SO4 gel electrolyte and resulted in an energy and power density of 0.25 mW h cm-3 and 65.1 mW cm-3, respectively. Overall, the results indicate a green and facile route to convert wood into carbon microfibers suitable for integration in wearables and energy storage devices and for potential applications in the field of bioelectronics.
Project description:This study investigates lignocellulose nanofibrils (LCNF) as a sustainable alternative material for printed circuit board (PCB) substrates, demonstrating an application through the development of an eco-friendly computer mouse demonstrator. LCNF is derived from lignin-rich cellulose pulp, a side stream product of biorefinery processes, combining the natural strength of cellulose fibrils with lignin to enhance mechanical and electrochemical properties. The research outlines the process of fibrillating lignin-rich cellulose pulp at 10 kW/h per kg into LCNF, followed by thermal and pressure treatment (at Δp = 50 - 1500 kN, ΔT = 30 - 120 °C) to achieve a rigid PCB substrate. Comprehensive characterization of the LCNF substrate included assessments of its mechanical properties (flexural and tensile testing), dimensional stability, electrical properties, surface uniformity and thermal conductivity. The LCNF PCB was integrated in a computer mouse demonstrator featuring inkjet printing of circuit layouts and electronic component assembly, while the mouse housing was designed and 3D-printed using eco-friendly Wood-PLA filament. Electrical properties characterization of the printed circuit and resulting functionality of the computer mouse showcases a sustainable approach to eco-electronics using wood-derived materials. This study underscores the potential of wood-derived nanomaterials like LCNF to reduce electronic waste (e-waste) associated with conventional PCB materials and promote the development of a more eco-friendly electronics, contributing to sustainable, high-performance ecoPCBs and advancing green technology.
Project description:BackgroundGut symbiotic microbiota plays a critical role in nutrient supply, digestion, and absorption. The bamboo snout beetle, Cyrtotrachelus buqueti, a common pest of several bamboo species, exhibits high lignocellulolytic enzyme activity and contains various CAZyme genes. However, to date, no studies have evaluated the role of gut symbiotic microbiota of the snout beetle on bamboo lignocellulose degradation. Therefore, the present study investigated the role of gut symbiotic microbiota of C. buqueti on bamboo lignocellulose degradation.ResultsGut symbiotic microbiota of female (CCJ), male (XCJ), and larvae (YCJ) beetles was used to treat bamboo shoot particles (BSPs) in vitro for 6 days. Scanning electron microscopy (SEM) revealed significant destruction of the lignocellulose structure after treatment, which was consistent with the degradation efficiencies of CCJ, XCJ, and YCJ for cellulose (21.11%, 17.58% and 18.74%, respectively); hemicellulose (22.22%, 27.18% and 34.20%, respectively); and lignin (19.83%, 24.30% and 32.97%, respectively). Gut symbiotic microbiota of adult and larvae beetles was then identified using 16sRNA sequencing, which revealed that four microbes: Lactococcus, Serratia, Dysgonomonas and Enterococcus, comprise approximately 84% to 94% of the microbiota. Moreover, the genomes of 45 Lactococcus, 72 Serratia, 86 Enterococcus and 4 Dysgonomonas microbes were used to analyse resident CAZyme genes. These results indicated that gut symbiotic microbiota of adult and larvae C. buqueti is involved in the lignocellulose degradation traits shown by the host.ConclusionsThis study shows that the gut symbiotic microbiota of C. buqueti participates in bamboo lignocellulose degradation, providing innovative findings for bamboo lignocellulose bioconversion. Furthermore, the results of this study will allow us to further isolate lignocellulose-degrading microbiota for use in bamboo lignocellulose bioconversion.
Project description:Poly(lactic acid) (PLA)/lignin-containing cellulose nanofibrils (L-CNFs) composite films with different lignin contents were produced bythe solution casting method. The effect of the lignin content on the mechanical, thermal, and crystallinity properties, and PLA/LCNFs interfacial adhesion wereinvestigated by tensile tests, thermogravimetric analysis, differential scanning calorimetry (DSC), dynamic mechanical analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The tensile strength and modulus of the PLA/9-LCNFs (9 wt % lignin LCNFs) composites are 37% and 61% higher than those of pure PLA, respectively. The glass transition temperature (Tg) decreases from 61.2 for pure PLA to 52.6 °C for the PLA/14-LCNFs (14 wt % lignin LCNFs) composite, and the composites have higher thermal stability below 380 °C than pure PLA. The DSC results indicate that the LCNFs, containing different lignin contents, act as a nucleating agent to increase the degree of crystallinity of PLA. The effect of the LCNFs lignin content on the PLA/LCNFs compatibility/adhesion was confirmed by the FTIR, SEM, and Tg results. Increasing the LCNFs lignin content increases the storage modulus of the PLA/LCNFs composites to a maximum for the PLA/9-LCNFs composite. This study shows that the lignin content has a considerable effect on the strength and flexibility of PLA/LCNFs composites.
Project description:Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion-gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved.
Project description:Although short bamboo nodes function in mechanical support and fluid exchange for bamboo survival, their structures are not fully understood compared to unidirectional fibrous internodes. Here, we identify the spatial heterostructure of the bamboo node via multiscale imaging strategies and investigate its mechanical properties by multimodal mechanical tests. We find three kinds of hierarchical fiber reinforcement schemes that originate from the bamboo node, including spatially tightened interlocking, triaxial interconnected scaffolding and isotropic intertwining. These reinforcement schemes, built on porous vascular bundles, microfibers and more-refined twist-aligned nanofibers, govern the structural stability of the bamboo via hierarchical toughening. In addition, the spatial liquid transport associated with these multiscale fibers within the bamboo node is experimentally verified, which gives perceptible evidence for life-indispensable multidirectional fluid exchange. The functional integration of mechanical reinforcement and liquid transport reflects the fact that the bamboo node has opted for elaborate structural optimization rather than ingredient richness. This study will advance our understanding of biological materials and provide insight into the design of fiber-reinforced structures and biomass utilization.
Project description:Due to their commendable biocompatibility, regenerated silk fibroin (RSF) films have attracted considerable research interest. However, the poor mechanical properties of RSF films have limited their use in various biomedical applications. In this study, a novel, highly crystalline silk fibril was successfully extracted from silk by combining degumming with ultrasonication. Ultrasonication accelerated the development of silk nanofibrils measuring 130-200 nm on the surface of the over-degummed silk fibers, which was confirmed via scanning electron microscopy. Additionally, the crystallinity index of silk fibril was found to be significantly higher (~68%) than that of conventionally degummed silk (~54%), as confirmed by the Fourier-transform infrared (FTIR) spectroscopy results. Furthermore, the breaking strength and elongation of the RSF film were increased 1.6 fold and 3.4 fold, respectively, following the addition of 15% silk nanofibrils. Thus, the mechanical properties of the RSF film were remarkably improved by the addition of the silk nanofibrils, implying that it can be used as an excellent reinforcing material for RSF films.
Project description:This article describes the development of lignocellulose-based analytical devices (LADs) for rapid bioanalysis in low-resource settings. LADs are constructed using either a single lignocellulose or a hybrid design consisting of multiple types of lignocellulose. LADs are simple, low-cost, easy to use, provide rapid response, and do not require external instrumentation during operation. Here, we demonstrate the implementation of LADs for food and water safety (i.e., nitrite assay in hot-pot soup, bacterial detection in water, and resazurin assay in milk) and urinalysis (i.e., nitrite, urobilinogen, and pH assays in human urine). Notably, we created a unique approach using simple chemicals to achieve sensitivity similar to that of commercially available immunochromatographic strips that is low-cost, and provides on-site, rapid detection, for instance, of Eschericia coli (E. coli) in water.
Project description:BackgroundAs an important biomass raw material, the lignocellulose in bamboo is of significant value in energy conversion. The conversion of bamboo lignocellulose into fermentable reducing sugar, i.e. the degradation of bamboo lignocellulose, is an important step in lignocellulose conversion. However, little research has focussed on excavating the enzymes and microbes that are related to the degradation of bamboo lignocellulose, which is important for its utilisation. This study used Cyrtotrachelus buqueti (bamboo snout beetle) to evaluate the efficiency of bamboo lignocellulose degradation.ResultsRNA sequencing was conducted to sequence the transcriptome of the insect before and after feeding on bamboo shoots. The expression levels of genes encoding several carbohydrate-active enzymes, such as endoglucanase (evgtrinloc27093t1 and evgtrinloc16407t0) and laccase (evgtrinloc15173t0 and evgtrinloc11252t0), were found to be upregulated after feeding. Faecal component analysis showed that the degradation efficiencies of cellulose, hemicellulose and lignin were 61.82%, 87.65% and 69.05%, respectively. After 6 days of co-culture with crude enzymes in vitro, the degradation efficiencies of cellulose, hemicellulose and lignin in bamboo shoot particles (BSPs) were 24.98%, 37.52% and 26.67%, respectively. These results indicated that lignocellulosic enzymes and related enzymes within the insect itself co-degraded bamboo lignocellulose. These finding can potentially be used for the pre-treatment and enzymatic hydrolysis of bamboo lignocellulose.ConclusionOur results showed that intestinal digestive enzymes from C. buqueti degraded bamboo shoot lignocellulose both in vivo and in vitro. In addition, the expression levels of many carbohydrate-active enzyme (CAZyme) genes were upregulated in the transcriptome, including those for cellulase, xylanase and ligninase genes. Therefore, we proposed a scheme for applying the lignocellulolytic enzymes from C. buqueti to degrade bamboo lignocellulose using genetic, enzymatic and fermentation engineering techniques to overexpress the lignocellulolytic enzymes genes in vitro and obtain large quantities of enzymes that could efficiently degrade bamboo lignocellulose and be used for lignocellulose bioconversion.
Project description:A series of composite films based on tetragonal barium titanate (BTO) and cellulose nanofibrils (CNF) with high dielectric constant are prepared using a casting method in aqueous solution. No organic solvent is involved during the preparation, which demonstrates the environmental friendliness of the novel material. With less than 30 wt% of filler loading, the excellent distribution of BTO nanoparticles within the CNF matrix is revealed by the FE-SEM images. The dielectric constant of the CNF/BTO (30 wt%) composite film reaches up to 188.03, which is about seven times higher than that of pure CNF (25.24), while the loss tangent only rises slightly from 0.70 to 1.21 (at 1 kHz). The thin films kept their dielectric properties on an acceptable level after repeatedly twisting or rolling 10 times. The improvement of thermal stability is observed with the presence of BTO. The outstanding dielectric properties of the CNF/BTO composite film indicates its great potential to be utilized in energy storage applications.