Project description:To successfully implement additive manufacturing (AM) techniques for custom medical device (MD) production with low-cost resources, it is imperative to understand the effect of common and affordable sterilization processes, such as formaldehyde or steam sterilization, on pieces manufactured by AM. In this way, the performance of low-risk MDs, such as biomodels and surgical guides, could be assessed for complying with safety, precision, and MD delivery requirements. In this context, the aim of the present work was to evaluate the effect of formaldehyde and steam sterilization on the dimensional and mechanical stability of standard polylactic acid (PLA) test pieces produced by fused deposition modeling (FDM). To achieve this, PLA samples were sterilized according to the sterilization protocol of a public hospital in the city of Bucaramanga, Colombia. Significant changes regarding mechanical and dimensional properties were found as a function of manufacturing parameters. This research attempts to contribute to the development of affordable approaches for the fabrication of functional and customized medical devices through AM technologies, an issue of particular interest for low- and middle-income countries.
Project description:Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.
Project description:A microneedle (MN) array is a novel biomedical device adopted in medical applications to pierce through the stratum corneum while targeting the viable epidermis and dermis layers of the skin. Owing to their micron-scale dimensions, MNs can minimize stimulations of the sensory nerve fibers in the dermis layer. For medical applications, such as wound healing, biosensing, and drug delivery, the structure of MNs significantly influences their mechanical properties. Among the various microfabrication methods for MNs, fused deposition modeling (FDM), a commercial 3D printing method, shows potential in terms of the biocompatibility of the printed material (polylactic acid (PLA)) and preprogrammable arbitrary shapes. Owing to the current limitations of FDM printer resolution, conventional micron-scale MN structures cannot be fabricated without a post-fabrication process. Hydrolysis in an alkaline solution is a feasible approach for reducing the size of PLA needles printed via FDM. Moreover, weak bonding between PLA layers during additive manufacturing triggers the detachment of PLA needles before etching to the expected sizes. Furthermore, various parameters for the fabrication of PLA MNs with FDM have yet to be sufficiently optimized. In this study, the thermal parameters of the FDM printing process, including the nozzle and printing stage temperatures, were investigated to bolster the interfacial bonding between PLA layers. Reinforced bonding was demonstrated to address the detachment challenges faced by PLA MNs during the chemical etching process. Furthermore, chemical etching parameters, including the etchant concentration, environmental temperature, and stirring speed of the etchant, were studied to determine the optimal etching ratio. To develop a universal methodology for the batch fabrication of biodegradable MNs, this study is expected to optimize the conditions of the FDM-based fabrication process. Additive manufacturing was employed to produce MNs with preprogrammed structures. Inclined MNs were successfully fabricated by FDM printing with chemical etching. This geometrical structure can be adopted to enhance adhesion to the skin layer. Our study provides a useful method for fabricating MN structures for various biomedical applications.
Project description:The aim of this systematic review was to determine the optimal printing parameters for the producing of fused deposition modeling (FDM) 3D-printed polyetheretherketone (PEEK) elements with mechanical properties suitable for dental restorations. Indeed, the mechanical properties are a critical prerequisite for the study of other parameters, such as physical, aesthetic and biological properties. An exhaustive electronic search was carried out in the PubMed, Embase and Web of knowledge databases to gather all the studies evaluating the influence of the printing parameters on the obtained mechanical properties of FDM 3D-printed PEEK elements were selected. Initially, the search resulted in 614 eligible papers. Independent screenings of the abstracts were performed by two authors to identify the articles related to the question. Twenty-nine studies were selected, of which eleven were further excluded after reading of the full text, and finally, eighteen articles were included in this review. The studies were difficult to compare due to the variability of the printing parameters and the types of PEEK. However, it seems interesting to use a high infill rate, a high chamber temperature close to that of the printing temperature and a heat post-treatment to obtain 3D PEEK elements presenting properties adapted to use as dental restorations. The analysis of the available literature suggested that the properties of PEEK could make it an interesting material in dental restorations to be performed with FDM additive manufacturing.
Project description:Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Project description:Ti-6Al-4V (TC4) titanium alloy parts were successfully fabricated by laser melting deposition (LMD) technology in this study. Proper normalizing temperatures were presented in detailed for bulk LMD specimens. Optical microscope, scanning electron microscopy, X-ray diffraction, and electronic universal testing machine were used to characterize the microstructures, phase compositions, the tensile properties and hardness of the TC4 alloy parts treated using different normalizing temperature. The experimental results showed that the as-fabricated LMD specimens' microstructures mainly consisted of ?-Ti phase with a small amount of ?-Ti phase. After normalizing treatment, in the area of ?-Ti phase, the recrystallized length and width of ?-Ti phase both increased. When normalizing in the (? + ?) phase field, the elongated primary ?-Ti phase in the as-deposited state was truncated due to the precipitation of ?-Ti phase and became a short rod-like primary ?-Ti phase. In as-fabricated microstructure, the ?-Ti phase was precipitated between different short rod-shaped ?-Ti phases distributed as basketweave. After normalizing treatment at 990 for two hours with subsequent air cooling, the TC4 titanium alloy had significant different microstructures from original sample produced by LMD. The normalizing treatment methods and temperature can be qualified as a prospective heat treatment of titanium alloy fabricating by laser melting deposition.
Project description:One of the key factors in manufacturing products by fused deposition molding (FDM) or layer-by-layer printing technology is the material intensity of the product. The task of reducing the amount of material required to manufacture a product without significant loss of mechanical properties is one of the most practically important technological tasks. Material saving in FDM printing of products allows to reduce financial costs and increase the speed of manufacturing of the final product without reducing (or not significantly reducing) the quality properties of the product. In our work it is demonstrated that using Combs filling type and materials of poly lactic acid (PLA) and polyethylene terephthalate glycol (PETG) it is possible to achieve material savings of up to 23% at 50% filling for PLA and 17% at 75% filling for PETG without significant reduction of product strength in comparison with other filling types. Exceptions are PLA samples with 100% fill and Lateral fill. Application of Kruskal-Wallis criterion and Dunn's criterion with Bonferroni multiple comparison correction showed that there were no statistically significant differences within the strength limits of samples made by FDM printing technology from PLA and PETG plastics (p-value = 0.0514), as well as samples with Triangle and Grid filling type (p-value = 1). Based on this result, three groups of samples statistically significantly differing in ultimate strength were identified by methods of hierarchical cluster analysis; in each group (except for group 1, which included samples made of PLA plastic with Lateral filling type and 100% filling), correlation analysis was performed (Spearman correlation was used). The results of the correlation analysis showed a stable average correlation between the percentage of filling, modulus along the secant 0.05-0.2% strain, ultimate strength and strain corresponding to the yield stress. Analysis of the correlation graph showed that the main parameter correlating with all mechanical properties of the specimen is the 0.05-0.2% strain modulus. Based on this conclusion, robust regression equations predicting the 0.05-0.2% strain modulus as a function of the percentage of specimen filling were constructed for the two selected groups. Analysis of the equations showed that in the third group of specimens, the average modulus of 0.05-0.2% strain is more than twice the modulus of 0.05-0.2% strain in the second group. The detected statistical regularities can be explained by the mechanism of strain hardening, the actual value of which depends on the structure of the macrodefect (type of filling), properties and volume of the material (percentage of filling) used in the fabrication of samples using FDM printing technology.
Project description:ObjectiveTo quantitatively evaluate maxillary complete dentures fabricated from polylactic acid (PLA) using fused deposition modelling (FDM) technology.MethodsA digital maxillary complete denture was prepared based on a standard maxillary edentulous plaster model. The PLA pattern was printed by a FDM machine, with 5 repetitions, while another 5 wax patterns were printed as control group, using a high accuracy three-dimensional (3D) wax printer. The patterns were scanned with a 3D scanner. A light-body silicone film was made after each denture pattern had been totally seated on the plaster model, and was scanned to determine its thickness, which reflected the 3D space between the plaster model and the tissue surface of the denture pattern. The overall area was separated into four parts: primary stress-bearing area, secondary stress-bearing area, border seal area and relief area, and the average deviation of these four parts were measured. The values were analyzed by independent t-test.ResultsThe overall mean value and standard deviation of space between PLA denture patterns and plaster model was 0.277 ± 0.021 mm, while that of the wax denture patterns was 0.279 ± 0.045 mm, which showed a good fit overall. No statistically significant (𝑃 > 0.05) difference was observed between the PLA patterns and wax patterns.ConclusionsThe adaptation of the PLA pattern of maxillary complete denture printed by FDM technology is comparable to that prepared by wax printer, and can satisfy the accuracy requirements.
Project description:Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight "precursor". As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.