Project description:A novel 3D printing route to fabricate continuous fiber reinforced metal matrix composite (CFRMMC) is proposed in this paper. It is distinguished from the 3D printing process of polymer matrix composite that utilizes the pressure inside the nozzle to combine the matrix with the fiber. This process combines the metallic matrix with the continuous fiber by utilizing the wetting and wicking performances of raw materials to form the compact internal structures and proper fiber-matrix interfaces. CF/Pb50Sn50 composites were printed with the Pb50Sn50 alloy wire and modified continuous carbon fiber. The mechanical properties of the composite specimens were studied, and the ultimate tensile strength reached 236.7 MPa, which was 7.1 times that of Pb50Sn50 alloy. The fracture and interfacial microstructure were investigated and analyzed. The relationships between mechanical properties and interfacial reactions were discussed. With the optimized process parameters, several composites parts were printed to demonstrate the advantages of low cost, short fabrication period and flexibility in fabrication of complex structures.
Project description:In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v.% fiber, using an L-RTM setup. RTM specimens with 44 v.% fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.
Project description:To fully exploit the preponderance of three-dimensional (3D)-printed, continuous, fiber-reinforced, thermoplastic composites (CFRTPCs) and self-reinforced composites (which exhibit excellent interfacial affinity and are fully recyclable), an approach in which continuous fiber self-reinforced composites (CFSRCs) can be fabricated by 3D printing is proposed. The influence of 3D-printing temperature on the mechanical performance of 3D-printed CFSRCs based on homogeneous, continuous, ultra-high-molecular-weight polyethylene (UHMWPE) fibers and high-density polyethylene (HDPE) filament, utilized as a reinforcing phase and matrix, respectively, was studied. Experimental results showed a qualitative relationship between the printing temperature and the mechanical properties. The ultimate tensile strength, as well as Young's modulus, were 300.2 MPa and 8.2 GPa, respectively. Furthermore, transcrystallization that occurred in the process of 3D printing resulted in an interface between fibers and the matrix. Finally, the recyclability of 3D-printed CFSRCs has also been demonstrated in this research for potential applications of green composites.
Project description:Active origami capable of precise deployment control, enabling on-demand modulation of its properties, is highly desirable in multi-scenario and multi-task applications. While 4D printing with shape memory composites holds great promise to realize such active origami, it still faces challenges such as low load-bearing capacity and limited transformable states. Here, we report a fabrication-design-actuation method of precisely controlled electrothermal origami with excellent mechanical performance and spatiotemporal controllability, utilizing 4D printing of continuous fiber-reinforced composites. The incorporation of continuous carbon fibers empowers electrothermal origami with a controllable actuation process via Joule heating, increased actuation force through improved heat conduction, and enhanced mechanical properties as a result of reinforcement. By modeling the multi-physical and highly nonlinear deploying process, we attain precise control over the active origami, allowing it to be reconfigured and locked into any desired configuration by manipulating activation parameters. Furthermore, we showcase the versatility of electrothermal origami by constructing reconfigurable robots, customizable architected materials, and programmable wings, which broadens the practical engineering applications of origami.
Project description:Recent advances in Freeform Reversible Embedding of Suspended Hydrogels (FRESH), a technique that is compatible with most open-source desktop 3D printers, has enabled the fabrication of complex 3D structures using a wide range of natural and synthetic hydrogels, whose mechanical properties can be modified by embedding long fibers into printed hydrogels. However, fiber extruders dedicated for this application are not commercially available or previously reported. To address this, we have designed a continuous fiber extruder (CFE) that is compatible with low-cost, open-source desktop 3D printers, and demonstrated its performance using a Flashforge Creator-pro printer with a Replistruder-2.0 print-head. Key characteristics of the CFE include: (1) it is affordable, accessible and user-friendly to the 3D printing community due to its low fabrication cost and compatibility with open-source hardware and software, (2) it can embed user-defined 2D and 3D features using long fibers into different types of hydrogels, (3) it works with fibers of different mechanical properties and sizes, (4) it can modify mechanical properties of FRESH printed hydrogels via long fiber embedding.
Project description:Improving the resilience of 3D-printed composites through material extrusion technology (MEX) is an ongoing challenge in order to meet the rigorous requirements of critical applications. The primary objective of this research was to enhance the impact resistance of 3D-printed composites by incorporating continuous hybrid fibers. Herein, continuous virgin carbon (1k) and Kevlar (130D and 200D) fibers were used with different weight and volume fractions as reinforcing fibers to produce hybrid and non-hybrid composites for impact resistance testing to obtain energy absorption with different impact energies: 20 J, 30 J, 40 J, and 50 J. Moreover, 0°/90° fiber orientations were used. Hybrid composites with combinations of PLA + CF + 130D KF and PLA + CF + 200D KF showed higher impact resistance, less damaged areas (71.45% to 90.486%), and higher energy absorption (5.52-11.64% more) behaviors compared to PLA + CF non-hybrids. CT scan images provided strong evidence to resist the fracture and breakage patterns, because the stiffness and elongation properties of the fibers acted together in the hybrids specimens. Furthermore, positive hybrid effects of the PLA + CF + KF hybrids also showed an ideal match of toughness and flexibility in order to resist the impacts. In the future, these hybrids will have the potential to replace the single type of composites in the fields of aerospace and automobiles.
Project description:Due to the availability, biodegradability, and biological effects, lignin has emerged as an interesting alternative to petroleum-based compounds for developing sustainable chemicals, materials, and composites. In this study, lignin at various concentrations was incorporated into methacrylate resin via solution blending to fabricate lignin-reinforced composites using stereolithography apparatus three-dimensional printing. Softwood kraft lignin in the amounts of 0.2, 0.4, 0.5, 0.8, and 1.0 wt % in the methacrylate resin was used as a printing ink, and the gel contents and relative contents of the residual resin in the printed samples with various lignin concentrations were measured. The effects of the lignin on the ultimate mechanical properties of the non-postcured and postcured printed composites were determined. The tensile testing results revealed that the incorporation of lignin in the composite increased the tensile strength by 46-64% and Young's modulus by 13-37% for the postcured printed composites compared with that of the control sample (no lignin added). Employing a 0.4 wt % softwood kraft lignin, the tensile strength of the postcured printed composite reached the highest value of 49.0 MPa, which was a 60% increase in comparison to that of the control sample with 30.7 MPa. Scanning electron microscopy images of the fracture samples illustrated that the lignin-incorporated composites exhibited a rougher fracture surface that can presumably dissipate the stress, which could be a contributing factor for the mechanical enhancement.
Project description:3D photonic crystals (PCs) have attracted extensive attention due to their unique optical properties. However, fabricating 3D PCs structure by 3D printing colloidal particles is limited by control of assembly under a fast-printing speed. Here, we employ continuous digital light processing (DLP) 3D printing strategy with hydrogen bonds assisted colloidal inks for fabricating well-assembled 3D PCs structures. Stable dispersion of colloidal particles inside UV-curable system induced by hydrogen bonding and suction force induced by continuous curing manner cooperatively realize the simultaneous macroscopic printing and microscopic particle assembly, which endows volumetric color property. Structural color can be well regulated by controlling the particle diameter and printing speed, through which various complex 3D structures with desired structural color distribution and optical light-guide properties are acquired. This 3D color construction approach shows great potential in customized jewelry accessories, decoration and optical device preparation, and will innovate the development of structural color.
Project description:Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.
Project description:Recent development in the field of additive manufacturing, also known as three-dimensional (3D) printing, has allowed for the incorporation of continuous fiber reinforcement into 3D-printed polymer parts. These fiber reinforcements allow for the improvement of the mechanical properties, but compared to traditionally produced composite materials, the fiber volume fraction often remains low. This study aims to evaluate the in-nozzle impregnation of continuous aramid fiber reinforcement with glycol-modified polyethylene terephthalate (PETG) using a modified, low-cost, tabletop 3D printer. We analyze how dimensional printing parameters such as layer height and line width affect the fiber volume fraction and fiber dispersion in printed composites. By varying these parameters, unidirectional specimens are printed that have an inner structure going from an array-like to a continuous layered-like structure with fiber loading between 20 and 45 vol%. The inner structure was analyzed by optical microscopy and Computed Tomography (µCT), achieving new insights into the structural composition of printed composites. The printed composites show good fiber alignment and the tensile modulus in the fiber direction increased from 2.2 GPa (non-reinforced) to 33 GPa (45 vol%), while the flexural modulus in the fiber direction increased from 1.6 GPa (non-reinforced) to 27 GPa (45 vol%). The continuous 3D reinforced specimens have quality and properties in the range of traditional composite materials produced by hand lay-up techniques, far exceeding the performance of typical bulk 3D-printed polymers. Hence, this technique has potential for the low-cost additive manufacturing of small, intricate parts with substantial mechanical performance, or parts of which only a small number is needed.