Project description:Polygalacturonase (PG) is an essential hydrolytic enzyme responsible for pectin degradation and thus plays an important role in fruit softening and other cell separation processes. PG protein is encoded by a multigene family, however, the members of PG gene family in kiwifruit (Actinidia chinensis) have not been extensively identified. In this study, a total of 51 AcPG genes in kiwifruit genome were identified. They are phylogenetically clustered into seven clades, and of them AcPG4 and AcPG18 with other known PG genes involved in fruit softening from peach, pear, papaya and melon form a small cluster together. The members of kiwifruit PG gene family consist of three to nine exons and two to eight introns, and their exon/intron structures are generally conserved in all clades except the clade D and E. During fruit softening of kiwifruit 'Donghong' under ambient temperature, cell wall modifying enzymes, including PG, PL (pectate and pectin lyases), and PE (pectinesterase, also known as pectin methylesterase, PME) showed a different activity profile, and of them, PG and PE activities largely correlated with the change of pectin content and firmness. Moreover, only 11 AcPG genes were highly or moderately expressed in softening fruit, and of which three AcPG genes (AcPG4, AcPG18, and AcPG8, especially the former two) has been found to strongly correlate with the profile of PG activity and pectin content, as well as fruit firmness, suggesting that they maybe play an important role in fruit softening. Thus, our findings not only benefit the functional characterization of kiwifruit PG genes, but also provide a subset of potential PG candidate genes for further genetic manipulation.
Project description:BACKGROUND:Polygalacturonase (PG), as an important hydrolase participating in the degradation of pectin, plays an important role in softening process of fruit. However, information on PG gene family in pear genome and the specific member involved in fruit softening is still rudimentary. RESULTS:In this study, a total of 61 PG genes, which could be divided into six subclasses, were identified from the pear genome with diverse chromosome locations, gene structures, motifs and cis-acting elements. Most PbrPGs were derived from WGD/segmental duplication blocks, and purifying selection was the main driving force for their expansion. The expression profiles of PbrPGs in pear were tissue/development-stage/cultivar-dependent. During 'Housui' pear storage, associated with the reduction of firmness was the accumulation of PG activity. Totally, 28 PbrPGs were expressed during fruit storage, which could be classified into five categories based on different expression patterns; most demonstrated an increased trend. Of these, PbrPG6 were proposed to account for pear softening in combination of the phylogenetic and correlation analysis among firmness, PG activity and PbrPGs. By constructing the silencing vector, a higher firmness was observed in PbrPG6-silenced fruit when compared with that of the control (empty vector). In a further study, we found that the expression of PbrPG6 was regulated by postharvest 1-MCP/ethrel treatment, and several PbrERFs might function in this process. CONCLUSIONS:We identified 61 PbrPG genes from pear genome; of these, PbrPG6 was involved in fruit softening process; furthermore, the expression of PbrPG6 might be under the control of PbrERF. This study provides a foundation for future work aimed at elucidating the molecular mechanism underlying pear softening.
Project description:The aim of this study was to determine the role of genes encoding polygalacturonases in strawberry fruit softening. To this purpose, several transgenic lines, cv. Chandler, were generated: plants with PG genes FaPG1 or FaPG2 downregulated, alone or in combination, by antisense transformation. Plants were grown in a confined greenhouse and fruits were harvested at the stage of full ripeness (100% of fruit surface red). The results obtained indicate that the silencing of these genes reduced fruit softening at similar level but there is not a sinergistic effect on fruit firmness.
Project description:BackgroundPolygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified.ResultsIn this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes.ConclusionA total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
Project description:Fruit softening is a crucial factor that controls shelf life and commercial value. Pectate lyase (PL) has a major role in strawberry fruit softening. However, the PL gene family in strawberry has not been comprehensively analyzed. In this study, 65 FaPL genes were identified in the octoploid strawberry genome. Subcellular localization prediction indicated that FaPLs are mostly localized to the extracellular and cytoplasmic spaces. Duplication event analysis suggested that FaPL gene family expansion is mainly driven by whole genome or segmental duplication. The FaPL family members were classified into six groups according to the phylogenetic analysis. Among them, FaPL1, 3, 5, 20, 25, 42, and 57 had gradually increased expressions during strawberry fruit development and ripening and higher expression levels in the fruits with less firmness than that in firmer fruit. This result suggested that these members are involved in strawberry softening. Furthermore, overexpression of FaPL1 significantly reduced the fruit firmness, ascorbic acid (AsA), and malondialdehyde (MDA) content but obviously increased the anthocyanins, soluble proteins, and titratable acidity (TA), while it had no apparent effects on flavonoids, phenolics, and soluble sugar content. These findings provide basic information on the FaPL gene family for further functional research and indicate that FaPL1 plays a vital role in strawberry fruit softening.
Project description:Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin degradation during fruit softening. However, the roles of PG family members in fruit softening remain unclear. We identified 45 PpPG genes in the peach genome which are clustered into six subclasses. PpPGs consist of four to nine exons and three to eight introns, and the exon/intron structure is basically conserved in all but subclass E. Only 16 PpPG genes were expressed in ripening fruit, and their expression profiles were analyzed during storage in two peach cultivars with different softening characteristics. Eight PGs (PpPG1, -10, -12, -13, -15, -23, -21, and -22) in fast-softening "Qian Jian Bai" (QJB) fruit and three PGs (PpPG15, -21, and -22) in slow-softening "Qin Wang" (QW) fruit exhibited softening-associated patterns; which also were affected by ethylene treatment. Our results suggest that the different softening characters in QW and QJB fruit is related to the amount of PG members. While keeping relatively lower levels during QW fruit softening, the expression of six PGs (PpPG1, -10, -12, -11, -14, and -35) rapidly induced by ethylene. PpPG24, -25 and -38 may not be involved in softening of peach fruit.
Project description:BackgroundThe fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized.ResultsIn this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening.ConclusionsOur study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.
Project description:Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.
Project description:BACKGROUND:Pectin methylesterase (PME) is a hydrolytic enzyme that catalyzes the demethylesterification of homogalacturonans and controls pectin reconstruction, being essential in regulation of cell wall modification. During fruit ripening stage, PME-mediated cell wall remodeling is an important process to determine fruit firmness and softening. Strawberry fruit is a soft fruit with a short postharvest life, due to a rapid loss of firm texture. Hence, preharvest improvement of strawberry fruit rigidity is a prerequisite for extension of fruit refreshing time. Although PME has been well characterized in model plants, knowledge regarding the functionality and evolutionary property of PME gene family in strawberry remain limited. RESULTS:A total of 54 PME genes (FvPMEs) were identified in woodland strawberry (Fragaria vesca 'Hawaii 4'). Phylogeny and gene structure analysis divided these FvPME genes into four groups (Group 1-4). Duplicate events analysis suggested that tandem and dispersed duplications effectively contributed to the expansion of the PME family in strawberry. Through transcriptome analysis, we identified FvPME38 and FvPME39 as the most abundant-expressed PMEs at fruit ripening stages, and they were positively regulated by abscisic acid. Genetic manipulation of FvPME38 and FvPME39 by overexpression and RNAi-silencing significantly influences the fruit firmness, pectin content and cell wall structure, indicating a requirement of PME for strawberry fruit softening. CONCLUSION:Our study globally analyzed strawberry pectin methylesterases by the approaches of phylogenetics, evolutionary prediction and genetic analysis. We verified the essential role of FvPME38 and FvPME39 in regulation of strawberry fruit softening process, which provided a guide for improving strawberry fruit firmness by modifying PME level.