Ontology highlight
ABSTRACT: Importance
Several lactic acid bacteria (LAB) species are intimately associated with bees and exhibit unique biochemical properties with potential for food applications and honeybee health. Using a machine-learning based approach, our study shows that adaptation of LAB to the bee environment was accompanied by a distinctive genomic trajectory deeply shaped by gene loss. Several of these gene losses occurred independently in distantly related species and are linked to some of their unique biotechnologically relevant traits, such as the preference of fructose over glucose (fructophily). This study underscores the potential of machine learning in identifying fingerprints of adaptation and detecting instances of convergent evolution. Furthermore, it sheds light onto the genomic and phenotypic particularities of bee-associated bacteria, thereby deepening the understanding of their positive impact on honeybee health.
SUBMITTER: Pontes A
PROVIDER: S-EPMC11244873 | biostudies-literature | 2024 Jul
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20240702
Distantly related organisms may evolve similar traits when exposed to similar environments or engaging in certain lifestyles. Several members of the Lactobacillaceae (LAB) family are frequently isolated from the floral niche, mostly from bees and flowers. In some floral LAB species (henceforth referred to as bee-associated), distinctive genomic (e.g., genome reduction) and phenotypic (e.g., preference for fructose over glucose or fructophily) features were recently documented. These features are ...[more]