Project description:The immunosuppressive microenvironment plays an important role in tumor progression and immunotherapy responses. Golgi membrane protein 1 (GOLM1) is correlated to hepatocellular carcinoma (HCC) progression and metastasis. However, little is known about the role of GOLM1 in regulating the immunosuppressive environment and its impact on immunotherapeutic efficacy in HCC. In this study, GOLM1 was positively correlated with infiltrating tumor-associated macrophages (TAMs) expressed high levels of programmed death-ligand 1 (PD-L1) and CD8+ T cell suppression in HCC tissues. Both gain- and loss-of-function studies determined a close correlation between GOLM1 and immunosuppression. In the mechanism, GOLM1 promoted COP9 signalosome 5-mediated PD-L1 deubiquitination in HCC cells and increased the transport of PD-L1 into exosomes via suppression of Rab27b expression. Furthermore, co-culture with exosomes derived from HCC cells upregulated the expression of PD-L1 on macrophages. Zoledronic acid in combination with anti-PD-L1 therapy reduced PD-L1+ TAMs infiltration and alleviated CD8+ T cell suppression, resulting in tumor growth inhibition in the mouse HCC model. Together, our study unveils a mechanism by which GOLM1 induces CD8+ T cells suppression through promoting PD-L1 stabilization and transporting PD-L1 into TAMs with exosome dependent. Targeting PD-L1+ TAM could be a novel strategy to enhance the efficacy of anti-PD-L1 therapy in HCC.
Project description:CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.
Project description:Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.
Project description:Lymph node (LN)-resident lymphatic endothelial cells (LEC) mediate peripheral tolerance by self-antigen presentation on MHC-I and constitutive expression of T-cell inhibitory molecules, including PD-L1 (CD274). Tumor-associated LECs also upregulate PD-L1, but the specific role of lymphatic PD-L1 in tumor immunity is not well understood. In this study, we generated a mouse model lacking lymphatic PD-L1 expression and challenged these mice with two orthotopic tumor models, B16F10 melanoma and MC38 colorectal carcinoma. Lymphatic PD-L1 deficiency resulted in consistent expansion of tumor-specific CD8+ T cells in tumor-draining LNs in both tumor models, reduced primary tumor growth in the MC38 model, and increased efficacy of adoptive T-cell therapy in the B16F10 model. Strikingly, lymphatic PD-L1 acted primarily by inducing apoptosis in tumor-specific CD8+ central memory T cells. Overall, these findings demonstrate that LECs restrain tumor-specific immunity via PD-L1, which may explain why some patients with cancer without PD-L1 expression in the tumor microenvironment still respond to PD-L1/PD-1-targeted immunotherapy. SIGNIFICANCE: A new lymphatic-specific PD-L1 knockout mouse model reveals that lymphatic endothelial PD-L1 expression reduces tumor immunity, inducing apoptosis in tumor-specific CD8+ central memory cells in tumor-draining lymph nodes.
Project description:Many autoimmune diseases are characterized by the production of autoantibodies. The current view is that CD4+ T follicular helper (Tfh) cells are the main subset regulating autoreactive B cells. Here we report a CXCR5+PD1+ Tfh subset of CD8+ T cells whose development and function are negatively modulated by Stat5. These CD8+ Tfh cells regulate the germinal center B cell response and control autoantibody production, as deficiency of Stat5 in CD8 T cells leads to an increase of CD8+ Tfh cells, resulting in the breakdown of B cell tolerance and concomitant autoantibody production. CD8+ Tfh cells share similar gene signatures with CD4+ Tfh, and require CD40L/CD40 and TCR/MHCI interactions to deliver help to B cells. Our study thus highlights the diversity of follicular T cell subsets that contribute to the breakdown of B-cell tolerance.
Project description:Vascular smooth muscle cell (VSMC) proliferation and migration play key roles in the progression of atherosclerosis and restenosis. A variety of ginsenosides exert various cardiovascular benefits. However, whether and how ginsenoside Rh1 (Rh1) inhibits VSMC dysfunction remain unclear. Here, we investigated the inhibitory effects of Rh1 on rat aortic smooth muscle cell (RASMC) migration and proliferation induced by angiotensin II (Ang II) and the underlying mechanisms. Cell proliferation and migration were evaluated using sulforhodamine B and wound-healing assay. The molecular mechanisms were investigated using Western blotting, quantitative reverse-transcription polymerase chain reaction analysis, immunofluorescence staining, and luciferase assay. Reactive oxygen species (ROS) production was measured using dihydroethidium and MitoSOX staining. We found that Rh1 dose-dependently suppressed Ang II-induced cell proliferation and migration. Concomitantly, Ang II increased protein levels of osteopontin, vimentin, MMP2, MMP9, PCNA, and cyclin D1, while these were reduced by Rh1 pretreatment. Notably, Ang II enhanced both the protein expression and promoter activity of KLF4, a key regulator of phenotypic switching, whereas pretreatment with Rh1 reversed these effects. Mechanistically, the effects of Rh1 on VSMC proliferation and migration were found to be associated with inhibition of ERK1/2/p90RSK signaling. Furthermore, the inhibitory effects of Rh1 were accompanied by inhibition of ROS production. In conclusion, Rh1 inhibited the Ang II-induced migration and proliferation of RASMCs by suppressing the ROS-mediated ERK1/2/p90RSK signaling pathway.
Project description:CD8+T cells contribute to tuberculosis (TB) infection control by inducing death of infected macrophages. Mycobacterium tuberculosis (Mtb) infection is associated with increased PD-1/PD-L1 expression and alternative activation of macrophages. We aimed to study the role of PD-1 pathway and macrophage polarization on Mtb-specific CD8+T cell-induced macrophage death. We observed that both PD-L1 on CD14+ cells and PD-1 on CD8+T cells were highly expressed at the site of infection in pleurisy TB patients' effusion samples (PEMC). Moreover, a significant increase in CD8+T cells' Mtb-specific degranulation from TB-PEMC vs. TB-PBMC was observed, which correlated with PD-1 and PDL-1 expression. In an in vitro model, M1 macrophages were more susceptible to Mtb-specific CD8+T cells' cytotoxicity compared to M2a macrophages and involved the transfer of cytolytic effector molecules from CD8+T lymphocytes to target cells. Additionally, PD-L1 blocking significantly increased the in vitro Ag-specific CD8+T cell cytotoxicity against IFN-γ-activated macrophages but had no effect over cytotoxicity on IL-4 or IL-10-activated macrophages. Interestingly, PD-L1 blocking enhanced Mtb-specific CD8+ T cell killing of CD14+ cells from human tuberculous pleural effusion samples. Our data indicate that PD-1/PD-L1 pathway modulates antigen-specific cytotoxicity against M1 targets in-vitro and encourage the exploration of checkpoint blockade as new adjuvant for TB therapies.
Project description:Tumor extracellular matrix has been associated with drug resistance and immune suppression. Here, proteomic and RNA profiling reveal increased collagen levels in lung tumors resistant to PD-1/PD-L1 blockade. Additionally, elevated collagen correlates with decreased total CD8+ T cells and increased exhausted CD8+ T cell subpopulations in murine and human lung tumors. Collagen-induced T cell exhaustion occurs through the receptor LAIR1, which is upregulated following CD18 interaction with collagen, and induces T cell exhaustion through SHP-1. Reduction in tumor collagen deposition through LOXL2 suppression increases T cell infiltration, diminishes exhausted T cells, and abrogates resistance to anti-PD-L1. Abrogating LAIR1 immunosuppression through LAIR2 overexpression or SHP-1 inhibition sensitizes resistant lung tumors to anti-PD-1. Clinically, increased collagen, LAIR1, and TIM-3 expression in melanoma patients treated with PD-1 blockade predict poorer survival and response. Our study identifies collagen and LAIR1 as potential markers for immunotherapy resistance and validates multiple promising therapeutic combinations.
Project description:Immune-checkpoint blockade enhances antitumor responses against cancers. One cancer type that is sensitive to checkpoint blockade is squamous cell carcinoma of the head and neck (SCCHN), which we use here to study limitations of this treatment modality. We observed that CD8+ tumor-infiltrating lymphocytes (TILs) in SCCHN and melanoma express excess immune checkpoints components PD-1 and Tim-3 and are also CD27-/CD28-, a phenotype we previously associated with immune dysfunction and suppression. In ex vivo experiments, patients' CD8+ TILs with this phenotype suppressed proliferation of autologous peripheral blood T cells. Similar phenotype and function of TILs was observed in the TC-1 mouse tumor model. Treatment of TC-1 tumors with anti-PD-1 or anti-Tim-3 slowed tumor growth in vivo and reversed the suppressive function of multi-checkpoint+ CD8+ TIL. Similarly, treatment of both human and mouse PD-1+ Tim-3+ CD8+ TILs with anticheckpoint antibodies ex vivo reversed their suppressive function. These suppressive CD8+ TILs from mice and humans expressed ligands for PD-1 and Tim-3 and exerted their suppressive function via IL10 and close contact. To model therapeutic strategies, we combined anti-PD-1 blockade with IL7 cytokine therapy or with transfer of antigen-specific T cells. Both strategies resulted in synergistic antitumor effects and reduced suppressor cell function. These findings enhance our understanding of checkpoint blockade in cancer treatment and identify strategies to promote synergistic activities in the context of other immunotherapies.