Project description:Genotype imputation is the process of predicting unobserved genotypes in a sample of individuals using a reference panel of haplotypes. In the last 10 years reference panels have increased in size by more than 100 fold. Increasing reference panel size improves accuracy of markers with low minor allele frequencies but poses ever increasing computational challenges for imputation methods. Here we present IMPUTE5, a genotype imputation method that can scale to reference panels with millions of samples. This method continues to refine the observation made in the IMPUTE2 method, that accuracy is optimized via use of a custom subset of haplotypes when imputing each individual. It achieves fast, accurate, and memory-efficient imputation by selecting haplotypes using the Positional Burrows Wheeler Transform (PBWT). By using the PBWT data structure at genotyped markers, IMPUTE5 identifies locally best matching haplotypes and long identical by state segments. The method then uses the selected haplotypes as conditioning states within the IMPUTE model. Using the HRC reference panel, which has ∼65,000 haplotypes, we show that IMPUTE5 is up to 30x faster than MINIMAC4 and up to 3x faster than BEAGLE5.1, and uses less memory than both these methods. Using simulated reference panels we show that IMPUTE5 scales sub-linearly with reference panel size. For example, keeping the number of imputed markers constant, increasing the reference panel size from 10,000 to 1 million haplotypes requires less than twice the computation time. As the reference panel increases in size IMPUTE5 is able to utilize a smaller number of reference haplotypes, thus reducing computational cost.
Project description:BackgroundThe development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities.ResultsIn this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME .ConclusionsIn order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity - e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% - while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples.
Project description:MotivationThe enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals.ResultsWe implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows-Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is approximately 10-20x faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package.Availabilityhttp://maq.sourceforge.net.
Project description:MotivationMany programs for aligning short sequencing reads to a reference genome have been developed in the last 2 years. Most of them are very efficient for short reads but inefficient or not applicable for reads >200 bp because the algorithms are heavily and specifically tuned for short queries with low sequencing error rate. However, some sequencing platforms already produce longer reads and others are expected to become available soon. For longer reads, hashing-based software such as BLAT and SSAHA2 remain the only choices. Nonetheless, these methods are substantially slower than short-read aligners in terms of aligned bases per unit time.ResultsWe designed and implemented a new algorithm, Burrows-Wheeler Aligner's Smith-Waterman Alignment (BWA-SW), to align long sequences up to 1 Mb against a large sequence database (e.g. the human genome) with a few gigabytes of memory. The algorithm is as accurate as SSAHA2, more accurate than BLAT, and is several to tens of times faster than both.Availabilityhttp://bio-bwa.sourceforge.net
Project description:Although β-dicarbonyl compounds are regularly employed as Michael donors, intermediates arising from the Michael addition of unsaturated β-ketoesters to α,β-unsaturated aldehydes are susceptible to multiple subsequent reaction pathways. We designed cyclic unsaturated β-ketoester substrates that enabled the development of the first diphenyl prolinol silyl ether catalyzed Michael-Michael cascade reaction initiated by a β-dicarbonyl Michael donor to form cyclohexene products. The reaction conditions we developed for this Michael-Michael cascade reaction were also amenable to a variety of linear unsaturated β-ketoester substrates, including some of the same linear unsaturated β-ketoester substrates that were previously ineffective in Michael-Michael cascade reactions. These studies thus revealed that a change in simple reaction conditions, such as solvent and additives, enables the same substrate to undergo different cascade reactions, thereby accessing different molecular scaffolds. These studies also culminated in the development of a general organocatalyzed Michael-Michael cascade reaction that generates highly functionalized cyclohexenes with up to four stereocenters, in up to 97% yield, 32:1 dr, and 99% ee, in a single step from a variety of unsaturated β-ketoesters.
Project description:A Wheeler graph represents a collection of strings in a way that is particularly easy to index and query. Such a graph is a practical choice for representing a graph-shaped pangenome, and it is the foundation for current graph-based pangenome indexes. However, there are no practical tools to visualize or to check graphs that may have the Wheeler properties. Here, we present Wheelie, an algorithm that combines a renaming heuristic with a permutation solver (Wheelie-PR) or a Satisfiability Modulo Theory (SMT) solver (Wheelie-SMT) to check whether a given graph has the Wheeler properties, a problem that is NP-complete in general. Wheelie can check a variety of random and real-world graphs in far less time than any algorithm proposed to date. It can check a graph with 1,000s of nodes in seconds. We implement these algorithms together with complementary visualization tools in the WGT toolkit, available as open source software at https://github.com/Kuanhao-Chao/Wheeler_Graph_Toolkit.