Project description:Data analysis and knowledge discovery has become more and more important in biology and medicine with the increasing complexity of biological datasets, but the necessarily sophisticated programming skills and in-depth understanding of algorithms needed pose barriers to most biologists and clinicians to perform such research. We have developed a modular open-source software, SIMON, to facilitate the application of 180+ state-of-the-art machine-learning algorithms to high-dimensional biomedical data. With an easy-to-use graphical user interface, standardized pipelines, and automated approach for machine learning and other statistical analysis methods, SIMON helps to identify optimal algorithms and provides a resource that empowers non-technical and technical researchers to identify crucial patterns in biomedical data.
Project description:In joint action literature it is often assumed that acting together is driven by pervasive and automatic process of co-representation, that is, representing the co-actor's part of the task in addition to one's own. Much of this research employs joint stimulus-response compatibility tasks varying the stimuli employed or the physical and social relations between participants. In this study we test the robustness of co-representation effects by focusing instead on variation in response modality. Specifically, we implement a mouse-tracking version of a Joint Simon Task in which participants respond by producing continuous movements with a computer mouse rather than pushing discrete buttons. We have three key findings. First, in a replication of an earlier study we show that in a classical individual Simon Task movement trajectories show greater curvature on incongruent trials, paralleling longer response times. Second, this effect largely disappears in a Go-NoGo Simon Task, in which participants respond to only one of the cues and refrain from responding to the other. Third, contrary to previous studies that use button pressing responses, we observe no overall effect in the joint variants of the task. However, we also detect a notable diversity in movement strategies adopted by the participants, with some participants showing the effect on the individual level. Our study casts doubt on the pervasiveness of co-representation, highlights the usefulness of mouse-tracking methodology and emphasizes the need for looking at individual variation in task performance.
Project description:Human cooperation can be facilitated by the ability to create a mental representation of one's own actions, as well as the actions of a partner, known as action co-representation. Even though other species also cooperate extensively, it is still unclear whether they have similar capacities. The Joint Simon task is a two-player task developed to investigate this action co-representation. We tested brown capuchin monkeys (Sapajus [Cebus] apella), a highly cooperative species, on a computerized Joint Simon task and found that, in line with previous research, the capuchins' performance was compatible with co-representation. However, a deeper exploration of the monkeys' responses showed that they, and potentially monkeys in previous studies, did not understand the control conditions, which precludes the interpretation of the results as a social phenomenon. Indeed, further testing to investigate alternative explanations demonstrated that our results were due to low-level cues, rather than action co-representation. This suggests that the Joint Simon task, at least in its current form, cannot determine whether non-human species co-represent their partner's role in joint tasks.
Project description:Abstract Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time–frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8–12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3–6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention. Using magnetoencephalography and a modified Simon task to investigate the neural oscillatory dynamics serving selective attention, Son et al. report decreases in alpha (8–12 Hz) activity in primary visual regions and increases in theta (3–6 Hz) activity in regions of the dorsal frontoparietal attention network. Graphical Abstract Graphical Abstract
Project description:While information that is associated with inappropriate responses can interfere with an ongoing task and be detrimental to performance, cognitive control mechanisms and specific contextual conditions can alleviate interference from unwanted information. In the spatial correspondence (Simon) task, interference has been consistently shown to be reduced by spatial non-correspondence in the previous trial (i.e., correspondence sequence effect, CSE); however the mechanisms supporting this sequential effect are not well understood. Here we investigated the role of novelty and trial-to-trial changes in stimulus and response features in a Simon task, observing similar modulation of CSE for novel and non-novel stimulus changes. However, changing the response modality from trial to trial dampened CSE, and this dampening was more pronounced when the probability of switch trials was higher, suggesting a role for long-term learning. The results are consistent with recent accounts, which indicate that spatial interference can be prevented by cognitive control mechanisms triggered by learned bindings.
Project description:The Simon effect is observed in spatial conflict tasks where the response time of subjects is increased if stimuli are presented in a lateralized manner so that they are incongruous with the response information that they represent symbolically. Previous studies have used fMRI to investigate this phenomenon, and while some have been driven by considerations of an underlying model, none have attempted to directly tie model and BOLD response together. It is likely that this is due to Simon models having been predominantly descriptive of the phenomenon rather than capturing the full spectrum of behavior at the level of individual subjects. Sequential sampling models (SSM) which capture full response distributions for correct and incorrect responses have recently been extended to capture conflict tasks. In this study we use our freely available framework for fitting and comparing non-standard SSMs to fit the Simon effect SSM (SE-SSM) to behavioral data. This model extension includes specific estimates of automatic response bias and a conflict counteraction parameter to individual subject behavioral data. We apply this approach in order to investigate whether our task specific model parameters have a correlate in BOLD response. Under the assumption that the SE-SSM reflects aspects of neural processing in this task, we go on to examine the BOLD correlates with the within trial expected decision-variable. We find that the SE-SSM captures the behavioral data and that our two conflict specific model parameters have clear across subject BOLD correlates, while other model parameters, as well as more standard behavioral measures do not. We also find that examining BOLD in terms of the expected decision-variable leads to a specific pattern of activation that would not be otherwise possible to extract.
Project description:Putting oneself in the shoes of a digital alter ego becomes an increasingly relevant part of our everyday experience. In modern day psychology, these interactions can be examined within the frameworks of visual perspective taking and body ownership. Both target similar questions: What does it take, to become one with the avatar? When do we show the same behavior and make the same experiences, as if we were in its place? In this study, we want to address the role of action effect consistency for these concepts. We manipulated the participants' sense of agency over a task-irrelevant avatar in a Simon task by providing either corresponding or random action effects. These effects could be either embodied and therefore linked to the avatar (Experiment 1) or independent of it (Experiment 2). We used stimulus-response compatibility effects from the avatar's point of view as a measure for spontaneous visual perspective taking and a questionnaire to measure the perceived body ownership of the avatar. The results showed that corresponding action effects lead to increased spontaneous perspective taking of the avatar, regardless of whether the effect was linked to the avatar or not. Though the avatar compatibility effects were overall more pronounced in the embodied action effect condition. However, significant differences in perceived body ownership were only observed if the effects were linked to the avatar. The results might prove useful to further our understanding of subjective and objective measurements of interactions with avatars.