Project description:Cyclohexene is an important intermediate during the oxidation of cycloalkanes, which comprise a significant portion of real fuels. Thus, experimental data sets and kinetic models of cyclohexene play an important role in the understanding of the combustion of cycloalkanes and real fuels. In this work, an experimental and kinetic modeling study of the high-temperature ignition of cyclohexene is performed. Ignition delay time (IDT) measurements are carried out in a high-pressure shock tube (HPST). The studied pressures are 5, 10, and 20 bar; the equivalence ratios are 0.5, 1.0, and 2.0; and the temperatures range from 980 to 1400 K for IDT in HPST. It is shown that the IDTs of cyclohexene exhibit Arrhenius behaviors as a function of temperature, and the IDTs decrease as the equivalence ratio and pressure increase. The experimental results are simulated using three previous detailed kinetic mechanisms and an updated detailed mechanism in this work. The updated detailed kinetic mechanism exhibits good agreement with experimental results. Reaction path analysis and sensitivity analysis are performed to provide insights into the chemical kinetics controlling the ignition of cyclohexene. The results demonstrate that different detailed kinetic mechanisms are significantly different, and there are still no unified conclusions about the major reaction path for cyclohexene oxidation. However, it is worth noting that the abstraction reaction by oxygen at the allylic site and the submechanism of cyclopentene are of significant importance for the accurate prediction of IDTs of cyclohexene. The present experimental data set and kinetic model should be valuable to improve our understanding of the combustion chemistry of cycloalkanes.
Project description:As one of the simplest polyols with chemical properties of alcohol, ethylene glycol is considered as a renewable energy source and a model fuel for pyrolysis oil. In this work, autoignition characteristics of ethylene glycol have been investigated behind reflected shock waves. Experiments were conducted at pressures of 2, 5, and 10 atm, equivalence ratios of 0.5, 1.0, and 2.0, and temperatures ranging from approximately 1200 to 1600 K. The fuel concentration was also varied. Results show that the ignition delay time increases with decreasing the pressure or fuel concentration. A strong positive dependence upon the equivalence ratio was found. A quantitative relationship has been yielded by the regression analysis of the experimental data. Simulations were carried out using chemical kinetic mechanisms available in the literature to assess the reliability of mechanism. Reaction pathway and sensitivity analysis confirmed the importance of H-abstraction reactions in ethylene glycol oxidation process. Finally, a comparison between ethylene glycol and ethanol ignition was conducted. Ethylene glycol ignites faster than ethanol because of the early accumulation of H and OH radicals in the oxidation of ethylene glycol.
Project description:In this paper, the theoretical analysis of the critical autoignition conditions for exothermically reacting systems at any value of the reaction order was conducted. The calculated and approximate analytical dependencies for the relationship between the parameters at the ignition limit were obtained. On the basis of the obtained diagrams of critical parameters, the conditions of thermal explosion (TE) degeneration for reactions of arbitrary order were determined. It was established that the existing theory of TE gives the correct estimates of ignition temperatures for a given condition of exothermic reaction realization (heat transfer coefficient, specific surface area, initial concentration). However, the theory gives unsatisfactory predictions for the mentioned critical TE conditions at a given ambient temperature. Moreover, the classical theory cannot be applied in the intermediate case when the effect of reactant consumption is already significant but the reaction still proceeds with all the signs of a TE.
Project description:A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
Project description:Chemical kinetics models for ethanol under ultra-lean engine conditions were evaluated to couple with CFD multidimensional simulations of a spark-assisted homogeneous charge compression ignition (HCCI) rotary engine. Five reduced reaction sets proper for CFD simulations and two detailed reaction mechanisms for comparison were tested by simulating ignition delay times, laminar flame speeds, and a single-cycle HCCI engine with virtual piston dimensions. The simulated results of the new mechanism with 188 reactions were well-fitted to both experimental ignition delay times for ultra-lean ethanol/air conditions and laminar flame speeds at high pressures. This reaction set resulted in better-simulated ignition delay times at 30 and 40 bar for ultra-lean ethanol/air conditions than other chemical kinetics models. Maximum temperatures and pressures of 2500-2580 K and 280-289 bar, respectively, were observed for hydrous ethanol/air under ultra-lean conditions in HCCI engine. In addition, the simulation results of the HCCI ethanol engine presented high pressure rise rates of 8-26 bar/CAD at 3600 rpm. These results indicated that the engine test should be carried out at 2500 rpm with 2 bar of boost pressure for CFD model calibration with the new optimized reaction mechanism.
Project description:The present work addresses the influence of the support on the catalytic behavior of Co3O4-based catalysts in the combustion of lean methane present in the exhaust gases from natural gas vehicular engines. Three different supports were selected, namely γ-alumina, magnesia and ceria and the corresponding catalysts were loaded with a nominal cobalt content of 30 wt. %. The samples were characterized by N2 physisorption, wavelength dispersive X-ray fluorescence (WDXRF), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction with hydrogen and methane. The performance was negatively influenced by a strong cobalt-support interaction, which in turn reduced the amount of active cobalt species as Co3O4. Hence, when alumina or magnesia supports were employed, the formation of CoAl2O4 or Co-Mg mixed oxides, respectively, with a low reducibility was evident, while ceria showed a lower affinity for deposited cobalt and this remained essentially as Co3O4. Furthermore, the observed partial insertion of Ce into the Co3O4 lattice played a beneficial role in promoting the oxygen mobility at low temperatures and consequently the catalytic activity. This catalyst also exhibited a good thermal stability while the presence of water vapor in the feedstream induced a partial inhibition, which was found to be completely reversible.
Project description:A single-pulse shock tube study of the pyrolysis of two different concentrations of Chinese RP-3 jet fuel at 5 bar in the temperature range of 900-1800 K has been performed in this work. Major intermediates are obtained and quantified using gas chromatography analysis. A flame-ionization detector and a thermal conductivity detector are used for species identification and quantification. Ethylene is the most abundant product in the pyrolysis process. Other important intermediates such as methane, ethane, propyne, acetylene, butene, and benzene are also identified and quantified. Kinetic modeling is performed using several detailed, semidetailed, and lumped mechanisms. It is found that the predictions for the major species such as ethylene, propene, and methane are acceptable. However, current kinetic mechanisms still need refinement for some important species. Different kinetic mechanisms exhibit very different performance in the prediction of certain species during the pyrolysis process. The rate of production (ROP) is carried out to compare the differences among these mechanisms and to identify major reaction pathways to the formation and consumption of the important species, and the results indicate that further studies on the thermal decomposition of 1,3-butadiene are needed to optimize kinetic models. The experimental data are expected to contribute to a database for the validation of mechanisms under pyrolytic conditions for RP-3 jet fuel and should also be valuable to a better understanding of the combustion behavior of RP-3 jet fuel.
Project description:The requirements for improving the efficiency of internal combustion engines and reducing emissions have promoted the development of new combustion technologies under extreme operating conditions (e.g., lean combustion), and the ignition and combustion characteristics of fuels are increasingly becoming important. A chemical kinetic reduced mechanism consisting of 115 species and 414 elementary reactions is developed for the prediction of ignition and combustion behaviors of gasoline surrogate fuels composed of five components, namely, isooctane, n-heptane, toluene, diisobutylene, and cyclohexane (CHX). The CHX sub-mechanism is obtained by simplifying the JetSurF2.0 mechanism using direct relationship graph error propagating, rate of production analysis, and temperature sensitivity analysis and CHX is mainly consumed through ring-opening reactions, continuous dehydrogenation, and oxygenation reactions. In addition, kinetic parameter corrections were made for key reactions R14 and R391 based on the accuracy of the ignition delay time and laminar flame velocity predictions. Under a wide range of conditions, the mechanism's ignition delay time, laminar flame speed, and the experimental and calculated results of multi-component gasoline surrogate fuel and real gasoline are compared. The proposed mechanism can accurately reproduce the combustion and oxidation of each component of the gasoline-surrogate fuel mixture and real gasoline.
Project description:Predicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth's surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the "spreading angle", has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.Supplementary informationThe online version contains supplementary material available at 10.1007/s00445-021-01473-0.