Project description:Photoacoustic endoscopy offers in vivo examination of the visceral tissue using endogenous contrast, but its typical B-scan rate is ∼10 Hz, restricted by the speed of the scanning unit and the laser pulse repetition rate. Here, we present a transvaginal fast-scanning optical-resolution photoacoustic endoscope with a 250-Hz B-scan rate over a 3-mm scanning range. Using this modality, we not only illustrated the morphological differences of vasculatures among the human ectocervix, uterine body, and sublingual mucosa but also showed the longitudinal and cross-sectional differences of cervical vasculatures in pregnant women. This technology is promising for screening the visceral pathological changes associated with angiogenesis.
Project description:Recently developed optical-resolution photoacoustic microscopy (OR-PAM), which is based on the detection of optical absorption contrast, is complementary to other optical microscopy modalities such as optical confocal microscopy, optical coherence tomography, and multiphoton microscopy. A hybrid optical-mechanical scanning configuration increases the imaging speed of OR-PAM significantly, facilitating many demanding biomedical applications. With a high-pulse-repetition-rate laser, the hybrid-scanning OR-PAM can acquire one-dimensional depth-resolved images (A-lines) at 5 kHz and two-dimensional B-scan images containing 800 A-lines at 6.25 Hz. We demonstrated in vivo in a mouse three-dimensional imaging of the iris vasculature in 128 s for an 800x800x200 data set and of the ear vasculature in 256 s for an 800x1600x200 data set.
Project description:Optical resolution photoacoustic microscopy (ORPAM) is an emerging imaging technique, which has been extensively used to study various brain activities and disorders of the anesthetized/restricted rodents with a special focus on the morphological and functional visualization of cerebral cortex. However, it is challenging to develop a wearable photoacoustic microscope, which enables the investigation of brain activities/disorders on freely moving rodents. Here, we report a wearable and robust optical resolution photoacoustic microscope (W-ORPAM), which utilizes a small, light, stable and fast optical scanner. This wearable imaging probe features high spatiotemporal resolution, large field of view (FOV) and easy assembly as well as adjustable optical focus during the in vivo experiment, which makes it accessible to image cerebral cortex activities of freely moving rodents. To demonstrate the advantages of this technique, we used W-ORPAM to monitor both morphological and functional variations of vasculature in cerebral cortex during the induction of ischemia and reperfusion of a freely moving rat.
Project description:Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm(2) in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm(3). More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications.
Project description:Compared with single-focus optical-resolution photoacoustic microscopy (OR-PAM), multifocal OR-PAM utilizes both multifocal optical illumination and an ultrasonic array transducer, significantly increasing the imaging speed. A reflection-mode multifocal OR-PAM system based on a microlens array that provides multiple foci as well as an ultrasonic array transducer that receives the excited photoacoustic waves from all foci simultaneously is presented. Using a customized microprism to reflect the incident laser beam to the microlens array, the multiple optical foci are aligned confocally with the focal zone of the ultrasonic array transducer. Experiments show the reflection-mode multifocal OR-PAM is capable of imaging microvessels in vivo, and it can image a 6×5×2.5 mm³ volume at 16 μm lateral resolution in ∼2.5 min, which was limited by the signal multiplexing ratio and laser pulse repetition rate.
Project description:Acoustic-resolution photoacoustic microscopy (AR-PAM) enables visualization of biological tissues at depths of several millimeters with superior optical absorption contrast. However, the lateral resolution and sensitivity of AR-PAM are generally lower than those of optical-resolution PAM (OR-PAM) owing to the intrinsic physical acoustic focusing mechanism. Here, we demonstrate a computational strategy with two generative adversarial networks (GANs) to perform semi/unsupervised reconstruction with high resolution and sensitivity in AR-PAM by maintaining its imaging capability at enhanced depths. The b-scan PAM images were prepared as paired (for semi-supervised conditional GAN) and unpaired (for unsupervised CycleGAN) groups for label-free reconstructed AR-PAM b-scan image generation and training. The semi/unsupervised GANs successfully improved resolution and sensitivity in a phantom and in vivo mouse ear test with ground truth. We also confirmed that GANs could enhance resolution and sensitivity of deep tissues without the ground truth.
Project description:Mueller microscopes enable imaging of the optical anisotropic properties of biological or non-biological samples, in phase and amplitude, at sub-micrometre scale. However, the development of Mueller microscopes poses an instrumental challenge: the production of polarimetric parameters must be sufficiently quick to ensure fast imaging, so that the evolution of these parameters can be visualised in real-time, allowing the operator to adjust the microscope while constantly monitoring them. In this report, a full Mueller scanning microscope based on spectral encoding of polarization is presented. The spectrum, collected every 10 μs for each position of the optical beam on the specimen, incorporates all the information needed to produce the full Mueller matrix, which allows simultaneous display of all the polarimetric parameters, at the unequalled rate of 1.5 Hz (for an image of 256 × 256 pixels). The design of the optical blocks allows for the real-time display of linear birefringent images which serve as guidance for the operator. In addition, the instrument has the capability to easily switch its functionality from a Mueller to a Second Harmonic Generation (SHG) microscope, providing a pixel-to-pixel matching of the images produced by the two modalities. The device performance is illustrated by imaging various unstained biological specimens.
Project description:By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have to sacrifice either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible microelectromechanical systems (MEMS) scanning mirror (MEMS-OR-PAM). In MEMS-OR-PAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures the uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. Presented results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.
Project description:Optical-resolution photoacoustic microscopy (OR-PAM) can visualize wavelength-dependent optical absorption at the cellular level. However, OR-PAM suffers from a limited depth of field (DOF) due to the tight focus of the optical excitation beam, making it challenging to acquire high-resolution images of samples with uneven surfaces or high-quality volumetric images without z-scanning. To overcome this limitation, we propose needle-shaped beam photoacoustic microscopy (NB-PAM), which can extend the DOF to up to ~28-fold Rayleigh lengths via customized diffractive optical elements (DOEs). The DOE generate a needle beam with a well-maintained beam diameter, a uniform axial intensity distribution, and negligible sidelobes. The advantage of using NB-PAM is demonstrated by both histology-like imaging of fresh slide-free organs using a 266 nm laser and in vivo mouse brain vasculature imaging using a 532 nm laser. The approach provides new perspectives for slide-free intraoperative pathological imaging and in-vivo organ-level imaging.
Project description:We report fiber-based dual-foci fast-scanning OR-PAM that can double the scanning rate without compromising the imaging resolution, the field of view, and the detection sensitivity. To achieve fast scanning speed, the OR-PAM system uses a single-axis water-immersible resonant scanning mirror that can confocally scan the optical and acoustic beams at 1018 Hz with a 3-mm range. Pulse energies of 45∼100-nJ are sufficient for acquiring vascular and oxygen-saturation images. The dual-foci method can double the B-scan rate to 2036 Hz. Using two lasers and stimulated Raman scattering, we achieve dual-wavelength excitation on both foci, and the total A-line rate is 3.2-MHz. In in vivo experiments, we inject epinephrine and monitor the hemodynamic and oxygen saturation response in the peripheral vessels at 1.7 Hz over 2.5 × 6.7 mm2. Dual-foci OR-PAM offers a new imaging tool for the study of fast physiological and pathological changes.