Unknown

Dataset Information

0

Deep transformer-based heterogeneous spatiotemporal graph learning for geographical traffic forecasting.


ABSTRACT: Accurate geographical traffic forecasting plays a critical role in urban transportation planning, traffic management, and geospatial artificial intelligence (GeoAI). Although deep learning models have made significant progress in geographical traffic forecasting, they still face challenges in effectively capturing long-term temporal dependencies and modeling heterogeneous dynamic spatial dependencies. To address these issues, we propose a novel deep transformer-based heterogeneous spatiotemporal graph learning model for geographical traffic forecasting. Our model incorporates a temporal transformer that captures long-term temporal patterns in traffic data without simple data fusion. Furthermore, we introduce adaptive normalized graph structures within different graph layers, enabling the model to capture dynamic spatial dependencies and adapt to diverse traffic scenarios, especially for the heterogeneous relationship. We conduct comprehensive experiments and visualization on four primary public datasets and demonstrate that our model achieves state-of-the-art results in comparison to existing methods.

SUBMITTER: Shi G 

PROVIDER: S-EPMC11302005 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep transformer-based heterogeneous spatiotemporal graph learning for geographical traffic forecasting.

Shi Guangsi G   Luo Linhao L   Song Yongze Y   Li Jing J   Pan Shirui S  

iScience 20240625 7


Accurate geographical traffic forecasting plays a critical role in urban transportation planning, traffic management, and geospatial artificial intelligence (GeoAI). Although deep learning models have made significant progress in geographical traffic forecasting, they still face challenges in effectively capturing long-term temporal dependencies and modeling heterogeneous dynamic spatial dependencies. To address these issues, we propose a novel deep transformer-based heterogeneous spatiotemporal  ...[more]

Similar Datasets

| S-EPMC9689721 | biostudies-literature
| S-EPMC10879798 | biostudies-literature
2024-09-13 | GSE262953 | GEO
2022-01-05 | GSE188791 | GEO
| S-EPMC10070395 | biostudies-literature
| S-EPMC9944243 | biostudies-literature
| S-EPMC9940339 | biostudies-literature
| S-EPMC10557501 | biostudies-literature
| S-EPMC10161039 | biostudies-literature
| S-EPMC11371806 | biostudies-literature