Unknown

Dataset Information

0

Development and performance evaluation of fully automated deep learning-based models for myocardial segmentation on T1 mapping MRI data.


ABSTRACT: To develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (Sørensen-Dice coefficient = DSC and Intersection-over-Union = IOU), two different activation functions (ReLU and LeakyReLU) and various numbers of training epochs. Training with DSC metric and a ReLU activation function over 35 epochs achieved the highest overall performance (mean error in T1 10.6 ± 17.9 ms, mean DSC 0.88 ± 0.07). Limits of agreement between model results and ground truth were from -35.5 to + 36.1 ms. This was superior to the agreement between two human raters (-34.7 to + 59.1 ms). Segmentation was as accurate for long-axis views (mean error T1: 6.77 ± 8.3 ms, mean DSC: 0.89 ± 0.03) as for short-axis images (mean error ΔT1: 11.6 ± 19.7 ms, mean DSC: 0.88 ± 0.08). Fully automated segmentation and quantitative analysis of native myocardial T1 maps is possible in both long-axis and short-axis orientations with very high accuracy.

SUBMITTER: Manzke M 

PROVIDER: S-EPMC11324648 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development and performance evaluation of fully automated deep learning-based models for myocardial segmentation on T1 mapping MRI data.

Manzke Mathias M   Iseke Simon S   Böttcher Benjamin B   Klemenz Ann-Christin AC   Weber Marc-André MA   Meinel Felix G FG  

Scientific reports 20240814 1


To develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (Sørensen-Dice coefficient = DSC and Intersection-over-Union =  ...[more]

Similar Datasets

| S-EPMC11803686 | biostudies-literature
| S-EPMC7858625 | biostudies-literature
| S-EPMC9163082 | biostudies-literature
| S-EPMC6291436 | biostudies-literature
| S-EPMC10881508 | biostudies-literature
| S-EPMC7724647 | biostudies-literature
| S-EPMC6949410 | biostudies-literature
| S-EPMC10415433 | biostudies-literature
| S-EPMC5537093 | biostudies-other
| S-EPMC11752426 | biostudies-literature