Unknown

Dataset Information

0

Autonomous stabilization with programmable stabilized state.


ABSTRACT: Reservoir engineering is a powerful technique to autonomously stabilize a quantum state. Traditional schemes involving multi-body states typically function for discrete entangled states. In this work, we enhance the stabilization capability to a continuous manifold of states with programmable stabilized state selection using multiple continuous tuning parameters. We experimentally achieve 84.6% and 82.5% stabilization fidelity for the odd and even-parity Bell states as two special points in the manifold. We also perform fast dissipative switching between these opposite parity states within 1.8 μs and 0.9 μs by sequentially applying different stabilization drives. Our result is a precursor for new reservoir engineering-based error correction schemes.

SUBMITTER: Li Z 

PROVIDER: S-EPMC11324797 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Autonomous stabilization with programmable stabilized state.

Li Ziqian Z   Roy Tanay T   Lu Yao Y   Kapit Eliot E   Schuster David I DI  

Nature communications 20240814 1


Reservoir engineering is a powerful technique to autonomously stabilize a quantum state. Traditional schemes involving multi-body states typically function for discrete entangled states. In this work, we enhance the stabilization capability to a continuous manifold of states with programmable stabilized state selection using multiple continuous tuning parameters. We experimentally achieve 84.6% and 82.5% stabilization fidelity for the odd and even-parity Bell states as two special points in the  ...[more]

Similar Datasets

| S-EPMC5784857 | biostudies-literature
| S-EPMC9944259 | biostudies-literature
| S-EPMC6825201 | biostudies-literature
| S-EPMC10019091 | biostudies-literature
| S-EPMC11256765 | biostudies-literature
| S-EPMC3570058 | biostudies-literature
| S-EPMC8488955 | biostudies-literature
| S-EPMC4380153 | biostudies-literature
| S-EPMC10618174 | biostudies-literature
| S-EPMC8159443 | biostudies-literature