Unknown

Dataset Information

0

Role of pyridoxine and oxidative stress in asthenozoospermia.


ABSTRACT:

Purpose

Infertility is a worldwide concern, and recent research indicates that vitamin B6 deficiency may play a role in male infertility, primarily by inducing hyperhomocysteinemia and oxidative stress. These processes can have a detrimental effect on semen quality, ultimately affecting male fertility. Here, we aim to evaluate the biochemical status of pyridoxine (vitamin B6) in relation to total glutathione and total antioxidant capacity.

Materials and methods

A case control study samples were collected of asthenozoospermic (n = 63) and normospermic (n = 43) cases, with average men age 30.35 ± 7.03 years old. Semen plasma specimens representing both fertile and sub-fertile men visiting two different secondary care health institute in Irbid province, Jordan. All samples were assessed according to WHO guidelines (2021) and by using spectrophotometry to evaluate the semen plasma levels of vitamin B6, glutathione (GSH) and total antioxidant capacity (TAC).

Results

Our main finding is there is significant positive correlations between the seminal plasma concentration of GSH (p < 0.0001) and TAC (p < 0.0073) are significantly correlated with vitamin B6 deficiency in asthenozoospermia group in comparison to normozoospermia cases. A significant decrease (p < 0.0001) the levels of vitamin B6 in men with asthenozoospermia compared to normozoospermic men (control) with an approximate 80 % percent reduction in the mean levels between groups.

Conclusions

These findings suggest that pyridoxine deficiency may very well alter the GSH system, in so doing affecting the antioxidant defense mechanism against reactive oxygen species to sperm, impacting sperm development and maturation. leading to asthenozoospermia.

SUBMITTER: Bdeir R 

PROVIDER: S-EPMC11325350 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of pyridoxine and oxidative stress in asthenozoospermia.

Bdeir Roba R   Aljabali Shefa' Muneer SM   Banihani Saleem Ali SA  

Heliyon 20240719 14


<h4>Purpose</h4>Infertility is a worldwide concern, and recent research indicates that vitamin B<sub>6</sub> deficiency may play a role in male infertility, primarily by inducing hyperhomocysteinemia and oxidative stress. These processes can have a detrimental effect on semen quality, ultimately affecting male fertility. Here, we aim to evaluate the biochemical status of pyridoxine (vitamin B<sub>6</sub>) in relation to total glutathione and total antioxidant capacity.<h4>Materials and methods</  ...[more]

Similar Datasets

| S-EPMC9200551 | biostudies-literature
| S-EPMC6230234 | biostudies-other
| S-EPMC3735302 | biostudies-literature
| S-EPMC7366322 | biostudies-literature
| S-EPMC4840676 | biostudies-literature
| S-EPMC10455473 | biostudies-literature
| S-EPMC3421885 | biostudies-literature
| S-EPMC8791758 | biostudies-literature
| S-EPMC4680839 | biostudies-literature
| S-EPMC7402083 | biostudies-literature